

OLIMPÍADA BRASILEIRA DE FÍSICA 2025

Prova da 3ª Fase

18 DE OUTUBRO DE 2025

NÍVEL II Ensino Médio 1^a e 2^a Séries

LEIA ATENTAMENTE AS INSTRUÇÕES:

- Esta prova destina-se exclusivamente aos alunos das 1^a e 2^a séries do nível médio. Ela contém 12 questões.
- 2. Os alunos da **1ª série** podem escolher livremente **8** questões para responder. Caso sejam respondidas mais de **8** questões, apenas as **8** primeiras respostas serão corrigidas.
- 3. Os alunos da **2^a série** podem responder apenas as 8 questões que não estão indicadas como *exclusivas para alunos da 1^a série*. As questões para a **2^a série** estão numeradas de 5 a 12.
- 4. Não é permitido uso de calculadoras e material de consulta.
- 5. Todas as respostas devem ser justificadas.
 - As resoluções e respostas devem ser dadas a tinta com caneta esferográfica azul ou preta (não use caneta de ponta porosa).
 - Use o verso das folhas de questões como rascunho.
- 6. O Caderno de Respostas possui instruções que devem ser lidas cuidadosamente antes do início da prova.
- 7. A menos de instruções específicas contidas no enunciado de uma questão, todos os resultados numéricos devem ser expressos em unidades do Sistema Internacional (SI).
- 8. A duração da prova é de **quatro** horas, devendo o aluno permanecer na sala por **no mínimo sessenta minutos.**
- 9. Se necessário e salvo indicação em contrário, use:

 $\sqrt{2}=1,4;~\sqrt{3}=1,7;~\sqrt{5}=2,2;~\sin(30^\circ)=0,50;~\cos(30^\circ)=0,85;~\sin(45^\circ)=0,70;~\pi=3;$ densidade da água = 1,0 g/cm³; 1 cal = 4,2 J; calor específico da água = 4,2 J/g °C; calor latente de vaporização da água = 540 cal/g; calor latente de fusão da água = 80 cal/g; velocidada da luz no vácuo $c=3\times10^8~\mathrm{m/s};$ velocidade do som no ar 340 m/s; e aceleração da gravidade = 10,0 m/s².

10. Se necessário, use a fórmula de aproximação para raízes quadradas:

$$\sqrt{N\pm\delta}\approx\sqrt{N}\pm\frac{\sqrt{N}}{2N}\cdot\delta$$

onde \sqrt{N} é uma raiz conhecida e $\sqrt{N\pm\delta}$ é a raiz a ser estimada. Exemplos:

•
$$\sqrt{38} = \sqrt{36+2} \approx \sqrt{36} + \frac{\sqrt{36}}{2 \cdot 36} \cdot 2 = 6 + \frac{2}{12} \approx 6{,}17$$

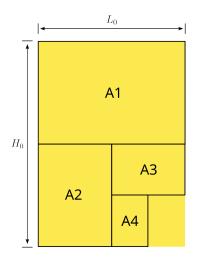
•
$$\sqrt{23} = \sqrt{25 - 2} \approx \sqrt{25} - \frac{\sqrt{25}}{2 \cdot 25} \cdot 2 = 5 - \frac{2}{10} = 4,80$$

Questão 1 (exclusiva para alunos da 1^a série).

A série de tamanhos de papel A tem como característica que cada formato possui metade da área do anterior e mantém a mesma proporção de lados. Na figura, a área sombreada de dimensões $L_0 \times H_0$ representa uma folha de papel A0. Dividindo transversalmente essa folha ao meio, obtêm-se duas folhas de papel A1, com lados $L_1 = H_0/2$ e $H_1 = L_0$. Repetindo esse processo, obtêm-se as folhas A2, A3, A4 e assim sucessivamente.

Considere que se deseja formar um bloco de anotações de folhas A6 a partir de uma única folha A0.

Sabendo que a folha A0 tem área de $1,00 \,\mathrm{m}^2$ e espessura de $1,00 \,\mathrm{mm}$, determine:

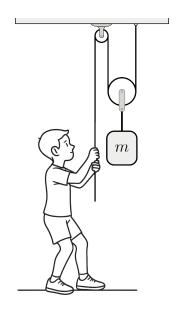


- (a) a altura e largura, em mm, de uma folha do bloco de anotações;
- (b) a espessura do bloco de anotações.

Questão 2 (exclusiva para alunos da 1ª série).

Um menino de massa $M=50.0\,\mathrm{kg}$ sustenta uma carga de massa m por meio de um sistema de polias, conforme a figura ao lado. A polia pequena está fixa ao teto e a polia grande é móvel, com a carga m presa ao seu eixo. O cabo passa pelas duas polias; uma extremidade é puxada pelo menino e a outra está presa ao teto. Considere polias e cabo ideais (inextensíveis e de massa desprezível). Analise o equilíbrio estático.

- (a) Qual é a força que o menino exerce no cabo quando $m = 15 \,\mathrm{kg}$?
- (b) Qual é a força que o menino exerce sobre o piso quando $m=15\,\mathrm{kg}$?
- (c) Qual é o maior valor de m que o menino consegue sustentar em equilíbrio estático com esse sistema?

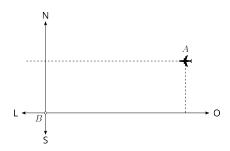


Questão 3 (exclusiva para alunos da $1^{\underline{a}}$ série). Dois satélites estão em órbitas aproximadamente circulares em torno da Terra, coplanares e passando sobre os polos. O período orbital do satélite A é $T_A = 3T$, e o do satélite B é $T_B = 10T$. Em certo instante, ambos estão alinhados e posicionados sobre o Polo Norte da Terra. Considere o intervalo de tempo até que os satélites retornem a essa mesma posição (alinhados sobre o Polo Norte). Determine:

- (a) quantas órbitas o satélite A completa nesse intervalo;
- (b) quantas vezes os satélites A e B ficam alinhados com a Terra abaixo deles nesse intervalo (sem contar os alinhamentos inicial e final);
- (c) quantas vezes os satélites A e B ficam alinhados com a Terra entre eles nesse intervalo.

Questão 4 (exclusiva para alunos da 1^a série).

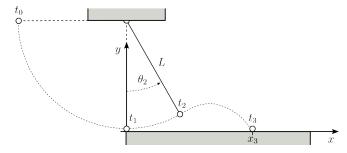
Um avião A desloca-se para leste com velocidade constante $v=800\,\mathrm{km/h}$, em uma rota que passa a 9,00 km ao norte de uma estação de monitoramento B. A estação está programada para alertar movimentos de aeronaves que estejam a menos de 15,0 km dela.



- (a) Por quantos minutos o movimento dessa aeronave permanece em alerta?
- (b) Seja $V_{r,\text{med}} = \Delta r/\Delta t$ a velocidade radial média do avião em relação a B (média da taxa de variação temporal da distância r do avião em relação a B). Determine $V_{r,\text{med}}$, em km/h, entre o primeiro alerta e o ponto de máxima aproximação de B.
- (c) Determinte uma expressão para a velocidade radial instantânea $V_r(t)$ considerando o instante inicial t=0 como o do primeiro alerta.
- (d) Esboce o gráfico de $V_r(t)$ obtido no item anterior.

Questão 5. Durante uma trilha na selva, dois estudantes de Física precisam cruzar um riacho usando uma corda presa ao alto de uma árvore. O desafio é decidir *quando* soltar a corda para alcançar a maior distância horizontal na outra margem.

Eles modelam a situação como um pêndulo simples: fio ideal de comprimento L, inextensível e de massa desprezível, com uma pequena esfera de massa m na extremidade (ver figura). Considere o ponto mais baixo da trajetória como nível y=0 (mesmo nível da margem de chegada).



No instante t_0 a esfera é solta do repouso a partir de y = L (fio horizontal). No instante t_1 o fio está vertical e a esfera passa por x = 0 (sobre o meio do riacho). No instante t_2 , quando o fio faz um ângulo θ_2 com a vertical, a esfera é liberada. No instante t_3 ela atinge a outra margem na coordenada horizontal x_3 .

- (a) Determine a coordenada $x_3(45^\circ)$ alcançada quando a esfera é liberada em $\theta_2 = 45^\circ$.
- (b) Determina a função $x_3(\theta_2)$ (alcance horizontal x_3 para dado ângulo de liberação θ_2), que é contínua no domínio $0 \le \theta_2 < 90^\circ$. Prove que esta função apresenta um máximo no intervalo $0^\circ < \theta_2 < 45^\circ$. Pode ser útil utilizar as aproximações de 1^a ordem (para δ pequeno, em rad):

$$\sin(\theta_2 + \delta) \approx \sin \theta_2 + \cos \theta_2 \, \delta,$$

$$\cos(\theta_2 + \delta) \approx \cos \theta_2 - \sin \theta_2 \, \delta,$$

$$\left(\cos(\theta_2 + \delta)\right)^{\alpha} \approx (\cos \theta_2)^{\alpha} - \alpha(\cos \theta_2)^{\alpha - 1} \sin \theta_2 \, \delta,$$

$$\sqrt{u_0 + \varepsilon} \approx \sqrt{u_0} + \frac{\varepsilon}{2\sqrt{u_0}} \quad \text{(em particular, } \sqrt{1 - C\delta} \approx 1 - \frac{C}{2}\delta\text{)}.$$

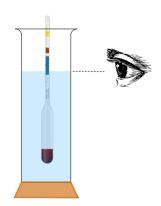
Questão 6. Eratóstenes de Cirene (séc. III a.C.) determinou o raio da Terra a partir de uma observação e de duas hipóteses. O fenômeno que lhe chamou a atenção é que, no mesmo instante, a direção de incidência dos raios solares varia com a latitude do ponto de observação. Para explicá-lo, ele assumiu que os raios solares são paralelos e que a Terra é esférica. Inspirados nessa abordagem, estudantes de Macapá (M) e Porto Alegre (P), cidades aproximadamente no mesmo meridiano, decidiram reproduzir o experimento. Macapá está praticamente sobre o Equador e Porto Alegre próxima ao paralelo 30° Sul. Um voo direto, pela rota mais curta, entre as duas cidades percorre a distância d=3 300 km. Considere que experimento é realizado ao meio-dia no equinócio, quando o Sol incide perpendicularmente em Macapá.

- (a) Qual é aproximadamente ângulo de incidência dos raios solares em Porto Alegre?
- (b) Determine o raio da Terra sob as hipóteses de Eratóstenes e os resultados experimentais. Justifique seu resultado através de um diagrama.
- (c) A mesma observação pode ser explicada por um modelo de Terra plana no qual o Sol é uma fonte de luz pontual a uma altura H acima do plano terrestre e está exatamente sobre Macapá ao meio-dia no equinócio. Determine H. Justifique seu resultado através de um diagrama.
- (d) Se o modelo de Terra plana é capaz de explicar a diferença de ângulo de incidência dos raios solares em diferentes cidades, por que ele não é adotado?

Questão 7.

Um densímetro é um instrumento que flutua em um líquido e se estabiliza em uma posição de equilíbrio estático com uma fração de seu volume submerso. Seu uso é comum em postos de fiscalização para verificar a pureza da gasolina comercializada. A escala do densímetro é calibrada com base na profundidade de imersão, permitindo estimar a densidade do líquido.

Considere um densímetro cilíndrico com massa $m=50\,\mathrm{g}$, área da base $A=2.0\,\mathrm{cm}^2$ e escala calibrada de modo que, quando imerso em gasolina pura, ele fica com $h_{\mathrm{gasolina}}=25.0\,\mathrm{cm}$ submerso. As densidades são $\rho_{\mathrm{gasolina}}=700\,\mathrm{kg/m}^3$ e $\rho_{\mathrm{etanol}}=800\,\mathrm{kg/m}^3$.



- (a) Combustíveis vendidos no Brasil como "gasolina comum" são, em geral, uma mistura (em volume) de 75% de gasolina pura e 25% de etanol anidro. A que profundidade o densímetro se estabiliza ao ser imerso nesse combustível?
- (b) Em uma fiscalização, ao inserir o densímetro em um combustível supostamente vendido como gasolina, observa-se profundidade submersa $h=33,0\,\mathrm{cm}$. Supondo que se trate de uma mistura de gasolina pura e etanol anidro, determine a fração volumétrica (ou porcentagem) de etanol na mistura.

Questão 8. Considere uma barra de aço orientada verticalmente, de comprimento inicial $L_0 = 0.60 \,\mathrm{m}$, densidade $\rho = 8.00 \times 10^3 \,\mathrm{kg/m}^3$ e área de seção transversal $A = 36 \,\mathrm{mm}^2$. A barra é solta sobre um piso idealmente rígido desde uma altura h medida em relação à sua base.

Define-se tensão normal e deformação axial por

$$\sigma = \frac{F}{A}$$
 (Pa), $\varepsilon = \frac{\Delta L}{L_0}$ (adimensional),

em que F é a força axial (positiva em tração e negativa em compressão), aplicada ao longo do eixo da barra e perpendicular à sua seção transversal de área A, e ΔL é a variação do comprimento da barra. O comportamento elástico linear do material é descrito pela **Lei de Hooke uniaxial**:

$$\sigma = Y \varepsilon$$
,

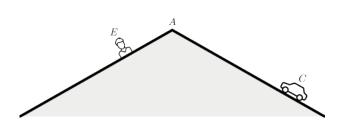
onde Y é o **módulo de Young** do material. Para o aço, use $Y = 2,00 \times 10^{11} \,\mathrm{N/m^2}$. Um material sofre uma deformação permanente quando $|\sigma|$ ultrapassa seu **limite de elasticidade** σ_y . Para o aço, use $\sigma_y = 400 \,\mathrm{MPa}$.

No impacto com o piso, considere que a base da barra para e surge, junto a ela, uma onda de compressão que se propaga para cima com velocidade $v_s = \sqrt{Y/\rho}$. Enquanto isso, o topo da barra segue movendo-se para baixo com velocidade v_0 (igual à da barra imediatamente antes do impacto) até o encontro com a frente de onda (a aceleração da gravidade pode ser desprezada neste curto intervalo de tempo).

- (a) Mostre que a lei de Hooke, F = kx, decorre da lei de Hooke uniaxial. Determine a constante elástica k da barra.
- (b) Estime o intervalo de tempo τ para que o topo pare de se mover.
- (c) Qual a maior altura de soltura h que não acarreta uma deformação permanente na barra.

Questão 9.

Um estudante (E) está sentado a 500 m do ponto mais alto (A) de um trecho de estrada rural isolada e de baixo tráfego. Ele percebe que consegue ouvir veículos que se aproximam do outro lado da elevação antes de vê-los no alto da colina (veja o diagrama, fora de escala). Resolve então fazer um jogo de adivinhação, prevendo o instante em que um automóvel aparecerá.



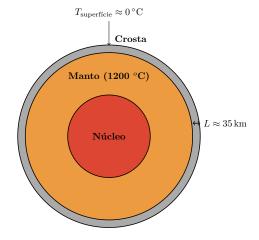
Admita que as ondas sonoras produzidas pelo motor sejam audíveis por E para distâncias de até $1,20\,\mathrm{km}$ e que os automóveis trafeguem a $60\,\mathrm{km/h}$.

- (a) Qual é o intervalo de tempo entre a percepção do ronco do automóvel e o momento em que ele é visto no alto (A)?
- (b) Que fenômeno ondulatório permite que a onda sonora "contorne" a elevação?

Questão 10.

A Terra primitiva, há bilhões de anos, era coberta por magma. Com o passar do tempo, à medida que o calor foi conduzido à superfície e irradiado para o espaço, formouse uma crosta sólida que cresceu progressivamente (veja esquema fora de escala). Atualmente, a crosta terrestre tem espessura média aproximada de $L=35\,\mathrm{km}$ e condutividade térmica média $k=2.5\,\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}^{-1}$.

Considere a temperatura do magma no manto $T_{\rm magma}=1200\,^{\circ}{\rm C}$ e a temperatura na superfície terrestre constante em $T_{\rm superfície}=0\,^{\circ}{\rm C}.$



Sabe-se ainda que, ao se solidificar, 1 m³ de magma libera aproximadamente 5×10^5 J de energia.

- (a) Estime a taxa de crescimento da crosta (em mm/ano) associada à dissipação de calor por condução entre o manto e a superfície.
- (b) Por simplicidade, suponha que essa taxa tenha permanecido constante desde a formação da Terra. Estime a ordem de grandeza do tempo em anos que a Terra possuía magma exposto na superfície.

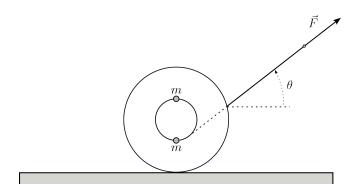
Questão 11. Considere um prisma triangular de vidro cujo ângulo de abertura entre as duas faces refratoras é $\alpha=30^{\circ}$. Um feixe colimado de luz branca incide perpendicularmente sobre uma de suas faces e emerge da segunda sofrendo um desvio. Adote índice de refração do ar $n_{\rm ar}=1,0$ e, para o vidro, índices com dispersão pequena em torno de 1,5. Os índices de refração nos extremos do espectro visível são $n_{\rm vermelho}=1,48$ e $n_{\rm violeta}=1,52$. Nas respostas, exprima ângulos em termos da função arcsen. Determine:

- (a) O desvio angular médio sofrido pelo raio de luz devido à presença do prisma triangular.
- (b) O *ângulo de abertura* do feixe emergente entre as cores vermelho e violeta na saída do prisma.

Questão 12. Um carretel de linha apoia-se sobre uma mesa horizontal com coeficientes de atrito estático e cinético iguais a $\mu=0.75$ (ver figura). O tambor interno, sobre o qual a linha está enrolada, tem raio $r=3.00\,\mathrm{cm}$; as coroas externas (bordas que tocam a mesa) têm raio $R=5.00\,\mathrm{cm}$, com R>r. Considere que toda a massa do carretel é 2m, modelada por duas massas m fixadas nos discos laterais, a uma distância r do centro.

Uma pessoa puxa a ponta da linha com força constante de módulo F=mg, formando um ângulo θ com a horizontal.

Seja a a aceleração linear do centro de massa G (positiva para a direita) e α a aceleração angular (positiva no sentido anti-horário).



- (a) Determine a e α quando $\theta = 0^{\circ}$.
- (b) Determine a e α quando $\theta = 90^{\circ}$.
- (c) Determine o ângulo crítico θ_c no qual o comportamento qualitativo do movimento muda do observado em (a) (para $\theta < \theta_c$) para o observado em (b) (para $\theta > \theta_c$).
- (d) Determine ae α quando $\theta=\theta_c$ e F=2mg.