

OLIMPÍADA BRASILEIRA DE FÍSICA 2025

Prova da 3ª Fase

18 DE OUTUBRO DE 2025

NÍVEL III Ensino Médio 3^a e 4^a Séries

LEIA ATENTAMENTE AS INSTRUÇÕES:

- Esta prova destina-se exclusivamente aos alunos da 3ª e 4ª séries do nível médio. Ela contém 8 questões.
- 2. Não é permitido uso de calculadoras e material de consulta.
- 3. Todas as respostas devem ser justificadas.
 - As resoluções e respostas devem ser dadas a tinta com caneta esferográfica azul ou preta (não use caneta de ponta porosa).
 - Use o verso das folhas de questões como rascunho.
- 4. O Caderno de Respostas possui instruções que devem ser lidas cuidadosamente antes do início da prova.
- 5. A menos de instruções específicas contidas no enunciado de uma questão, todos os resultados numéricos devem ser expressos em unidades do Sistema Internacional (SI).
- 6. A duração da prova é de **quatro** horas, devendo o aluno permanecer na sala por **no mínimo sessenta minutos.**
- 7. Se necessário e salvo indicação em contrário, use: $\sqrt{2} = 1.4$; $\sqrt{3} = 1.7$; $\sqrt{5} = 2.2$; $sen(30^\circ) = 0.50$; $cos(30^\circ) = 0.85$; $sen(45^\circ) = 0.70$; $\pi = 3$; densidade da água = 1.0 g/cm^3 ; 1 cal = 4.2 J; calor específico da água = $4.2 \text{ J/g}\,^\circ\text{C}$; constante de Coulomb = $9 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$; constante de Planck = $6.6 \times 10^{-34} \text{ J} \cdot \text{s}$; velocidade do som no ar 340 m/s; velocidada da luz no vácuo $c = 3 \times 10^8 \text{ m/s}$; e aceleração da gravidade = 10.0 m/s^2 .
- 8. Se necessário, use a fórmula de aproximação para raízes quadradas:

$$\sqrt{N \pm \delta} \approx \sqrt{N} \pm \frac{\sqrt{N}}{2N} \cdot \delta$$

onde \sqrt{N} é uma raiz conhecida e $\sqrt{N\pm\delta}$ é a raiz a ser estimada. Exemplos:

•
$$\sqrt{38} = \sqrt{36 + 2} \approx \sqrt{36} + \frac{\sqrt{36}}{2 \cdot 36} \cdot 2 = 6 + \frac{2}{12} \approx 6,17$$

•
$$\sqrt{23} = \sqrt{25 - 2} \approx \sqrt{25} - \frac{\sqrt{25}}{2 \cdot 25} \cdot 2 = 5 - \frac{2}{10} = 4,80$$

Questão 1. Eratóstenes de Cirene (séc. III a.C.) determinou o raio da Terra a partir de uma observação e de duas hipóteses. O fenômeno que lhe chamou a atenção é que, no mesmo instante, a direção de incidência dos raios solares varia com a latitude do ponto de observação. Para explicá-lo, ele assumiu que os raios solares são paralelos e que a Terra é esférica. Inspirados nessa abordagem, estudantes de Macapá (M) e Porto Alegre (P), cidades aproximadamente no mesmo meridiano, decidiram reproduzir o experimento. Macapá está praticamente sobre o Equador e Porto Alegre próxima ao paralelo 30° Sul. Um voo direto, pela rota mais curta, entre as duas cidades percorre a distância d=3 300 km. Considere que experimento é realizado ao meio-dia no equinócio, quando o Sol incide perpendicularmente em Macapá.

- (a) Qual é aproximadamente ângulo de incidência dos raios solares em Porto Alegre?
- (b) Determine o raio da Terra sob as hipóteses de Eratóstenes e os resultados experimentais. Justifique seu resultado através de um diagrama.
- (c) A mesma observação pode ser explicada por um modelo de Terra plana no qual o Sol é uma fonte de luz pontual a uma altura H acima do plano terrestre e está exatamente sobre Macapá ao meio-dia no equinócio. Determine H. Justifique seu resultado através de um diagrama.
- (d) Se o modelo de Terra plana é capaz de explicar a diferença de ângulo de incidência dos raios solares em diferentes cidades, por que ele não é adotado?

Questão 2. Considere uma barra de aço orientada verticalmente, de comprimento inicial $L_0 = 0.60 \,\mathrm{m}$, densidade $\rho = 8.00 \times 10^3 \,\mathrm{kg/m^3}$ e área de seção transversal $A = 36 \,\mathrm{mm^2}$. A barra é solta sobre um piso idealmente rígido desde uma altura h medida em relação à sua base.

Define-se tensão normal e deformação axial por

$$\sigma = \frac{F}{A}$$
 (Pa), $\varepsilon = \frac{\Delta L}{L_0}$ (adimensional),

em que F é a força axial (positiva em tração e negativa em compressão), aplicada ao longo do eixo da barra e perpendicular à sua seção transversal de área A, e ΔL é a variação do comprimento da barra. O comportamento elástico linear do material é descrito pela **Lei de Hooke uniaxial**:

$$\sigma = Y\varepsilon$$
,

onde Y é o **módulo de Young** do material. Para o aço, use $Y = 2.00 \times 10^{11} \,\mathrm{N/m^2}$. Um material sofre uma deformação permanente quando $|\sigma|$ ultrapassa seu **limite de elasticidade** σ_y . Para o aço, use $\sigma_y = 400 \,\mathrm{MPa}$.

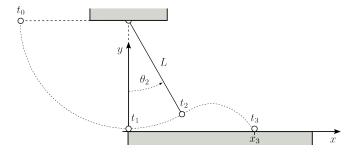
No impacto com o piso, considere que a base da barra para e surge, junto a ela, uma onda de compressão que se propaga para cima com velocidade $v_s = \sqrt{Y/\rho}$. Enquanto isso, o topo da barra segue movendo-se para baixo com velocidade v_0 (igual à da barra imediatamente antes do impacto) até o encontro com a frente de onda (a aceleração da gravidade pode ser desprezada neste curto intervalo de tempo).

- (a) Estime o intervalo de tempo τ para que o topo pare de se mover.
- (b) Qual a maior altura de soltura h que não causa uma deformação permanente na barra.

Questão 3.

Durante uma trilha na selva, dois estudantes de Física precisam cruzar um riacho usando uma corda presa ao alto de uma árvore. O desafio é decidir *quando* soltar a corda para alcançar a maior distância horizontal na outra margem.

Eles modelam a situação como um pêndulo simples: fio ideal de comprimento L, inextensível e de massa desprezível, com uma pequena esfera de massa m na extremidade (ver figura). Considere o ponto mais baixo da trajetória como nível y=0 (mesmo nível da margem de chegada).



No instante t_0 a esfera é solta do repouso a partir de y = L (fio horizontal). No instante t_1 o fio está vertical e a esfera passa por x = 0 (sobre o meio do riacho). No instante t_2 , quando o fio faz um ângulo θ_2 com a vertical, a esfera é liberada. No instante t_3 ela atinge a outra margem na coordenada horizontal x_3 .

- (a) Determine a coordenada $x_3(45^\circ)$ alcançada quando a esfera é liberada em $\theta_2 = 45^\circ$.
- (b) Determina a função $x_3(\theta_2)$ (alcance horizontal x_3 para dado ângulo de liberação θ_2), que é contínua no domínio $0 \le \theta_2 < 90^\circ$. Prove que esta função apresenta um máximo no intervalo $0^\circ < \theta_2 < 45^\circ$. Pode ser útil utilizar as aproximações de 1^a ordem (para δ pequeno, em rad):

$$\sin(\theta_2 + \delta) \approx \sin \theta_2 + \cos \theta_2 \, \delta,$$

$$\cos(\theta_2 + \delta) \approx \cos \theta_2 - \sin \theta_2 \, \delta,$$

$$\left(\cos(\theta_2 + \delta)\right)^{\alpha} \approx (\cos \theta_2)^{\alpha} - \alpha(\cos \theta_2)^{\alpha - 1} \sin \theta_2 \, \delta,$$

$$\sqrt{u_0 + \varepsilon} \approx \sqrt{u_0} + \frac{\varepsilon}{2\sqrt{u_0}} \quad \text{(em particular, } \sqrt{1 - C\delta} \approx 1 - \frac{C}{2}\delta\text{)}.$$

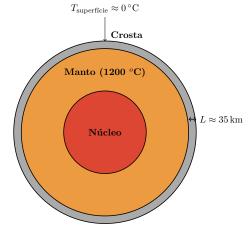
Questão 4. Um feixe de luz vermelha monocromática, linearmente polarizada na direção vertical, incide sobre um polarizador linear cuja direção de transmissão está inclinada de 30° em relação à vertical. A intensidade inicial do feixe é $I_0=12,0~{\rm mW/m}^2$ e o comprimento de onda da luz vermelha utilizada é $\lambda=630~{\rm nm}$.

- (a) Determine a intensidade da luz transmitida pelo polarizador.
- (b) Sabendo que a área da seção transversal do feixe é $A=1,0~{\rm cm^2}$, calcule o número de fótons por segundo que incidem sobre o polarizador.
- (c) Comente o que acontece quando um único fóton incide sobre o polarizador.

Questão 5.

A Terra primitiva, há bilhões de anos, era coberta por magma. Com o passar do tempo, à medida que o calor foi conduzido à superfície e irradiado para o espaço, formouse uma crosta sólida que cresceu progressivamente (veja esquema fora de escala). Atualmente, a crosta terrestre tem espessura média aproximada de $L=35\,\mathrm{km}$ e condutividade térmica média $k=2.5\,\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}^{-1}$.

Considere a temperatura do magma no manto $T_{\text{magma}} = 1200\,^{\circ}\text{C}$ e a temperatura na superfície terrestre constante em $T_{\text{superfície}} = 0\,^{\circ}\text{C}$.



Sabe-se ainda que, ao se solidificar, 1 m^3 de magma libera aproximadamente $5 \times 10^5 \text{ J}$ de energia.

- (a) Estime a taxa de crescimento da crosta (em mm/ano) associada à dissipação de calor por condução entre o manto e a superfície.
- (b) Por simplicidade, suponha que essa taxa tenha permanecido constante desde a formação da Terra. Estime a ordem de grandeza do tempo em anos que a Terra possuía magma exposto na superfície.

Questão 6.

Em linhas de transmissão de energia (como na figura), utiliza-se corrente alternada (CA) em diferentes fases para elevar a potência entregue, mantendo as correntes nos condutores dentro de limites seguros. Considere um sistema trifásico com três condutores (a,b,c), cada um com tensão de pico V_3 e defasagens mútuas de $2\pi/3$:

$$v_a(t) = V_3 \cos(\omega t),$$

$$v_b(t) = V_3 \cos(\omega t - \frac{2\pi}{3}),$$

$$v_c(t) = V_3 \cos(\omega t + \frac{2\pi}{3}).$$

Diferentes tensões instantâneas podem ser obtidas ligando pares de fases a cargas puramente resistivas, todas de resistência R (sistema balanceado).

- (a) Escreva as três tensões de linha (pico) obtidas ao ligar os pares de fases (a,b), (b,c) e (c,a), mostrando que podem ser escritas na forma $V\cos(\omega t + \phi)$ na qual V e ϕ dependem de V_3 e das defasagens.
- (b) Calcule a potência média total transmitida no arranjo trifásico balanceado, P_3 , em termos de V_3 e R.

 $Dica: \overline{\cos^2(\omega t)} = 1/2$ (média em um período).

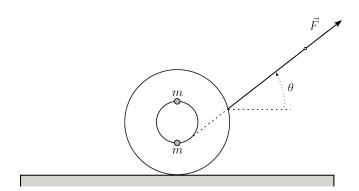
Questão 7. Considere um prisma triangular de vidro cujo ângulo de abertura entre as duas faces refratoras é $\alpha=30^\circ$. Um feixe colimado de luz branca incide perpendicularmente sobre uma de suas faces e emerge da segunda sofrendo um desvio. Adote índice de refração do ar $n_{\rm ar}=1,0$ e, para o vidro, índices com dispersão pequena em torno de 1,5. Os índices de refração nos extremos do espectro visível são $n_{\rm vermelho}=1,48$ e $n_{\rm violeta}=1,52$. Nas respostas, exprima ângulos em termos da função arcsen. Determine:

- (a) O desvio angular médio sofrido pelo raio de luz devido à presença do prisma triangular.
- (b) O *ângulo de abertura* do feixe emergente entre as cores vermelho e violeta na saída do prisma.

Questão 8. Um carretel de linha apoia-se sobre uma mesa horizontal com coeficientes de atrito estático e cinético iguais a $\mu=0.75$ (ver figura). O tambor interno, sobre o qual a linha está enrolada, tem raio $r=3.00\,\mathrm{cm}$; as coroas externas (bordas que tocam a mesa) têm raio $R=5.00\,\mathrm{cm}$, com R>r. Considere que toda a massa do carretel é 2m, modelada por duas massas m fixadas nos discos laterais, a uma distância r do centro.

Uma pessoa puxa a ponta da linha com força constante de módulo F=mg, formando um ângulo θ com a horizontal.

Seja a a aceleração linear do centro de massa G (positiva para a direita) e α a aceleração angular (positiva no sentido anti-horário).



- (a) Determine $a \in \alpha$ quando $\theta = 0^{\circ}$.
- (b) Determine $a \in \alpha$ quando $\theta = 90^{\circ}$.
- (c) Determine o ângulo crítico θ_c no qual o comportamento qualitativo do movimento muda do observado em (a) (para $\theta < \theta_c$) para o observado em (b) (para $\theta > \theta_c$).
- (d) Determine a e α quando $\theta = \theta_c$ e F = 2mg.