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Q1 - Pêndulo de barras compensadas (10 pontos)
Considere um pêndulo f́ısico composto por três barras delgadas e homogêneas, conectadas por duas pequenas
plataformas ŕıgidas de espessura despreźıvel, conforme o esquema conceitual abaixo.

Figura 1: Diagrama esquemático do pêndulo de barras compensadas.

As duas barras principais têm massa M1 = M e comprimento L1 = L, sendo ligadas paralelamente pelas
plataformas em suas extremidades. O sistema pode oscilar em torno de um pivô situado no centro da plataforma
superior, de modo que o conjunto se comporte como um corpo ŕıgido oscilando em torno de um eixo horizontal
e perpendicular ao plano das barras.

Na extremidade inferior, presa à plataforma oposta, encontra-se uma barra auxiliar de massa M2 = M/2 e
comprimento L2 = L/2, orientada em direção ao pivô, isto é, apontando para cima. Todas as barras são
delgadas e homogêneas. As plataformas, assim como conexões entre barras, têm massa despreźıvel. O objetivo
do arranjo é reduzir a variação do peŕıodo de oscilação com respeito à variação da temperatura θ.

Considere que o movimento do sistema possa ser tratado como pequenas oscilações no plano vertical. A distância
entre as duas barras principais é muito pequena quando comparada aos comprimentos L e L/2. A aceleração
da gravidade é g, tomada constante.

A. Determine a distância h do centro de massa com respeito ao pivô da oscilação. 1,0pt

B. Determine o peŕıodo T de pequenas oscilações do pêndulo descrito, em função de
M , L e g.

3,0pt

Admita agora que as barras principais e a barra auxiliar sofrem dilatação térmica linear, com coeficientes de
dilatação linear respectivamente dados por α1 e α2.

C. Determine o valor numérico da razão α1/α2 que garanta que o peŕıodo de oscilação T
permaneça aproximadamente invariante frente a pequenas variações de temperatura.
Considere apenas termos de primeira ordem em ∆θ.

6,0pt
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Q2 - Capacitor “defeituoso”(10 pontos)
De uma placa de um capacitor plano, descarregado, que se conecta, em paralelo, a uma bobina ideal de in-
dutância L, se desprende uma lâmina fina, de carga q de dimensões iguais às placas do capacitor. A lâmina se
move com velocidade constante V ≪ c, na direção paralela às placas, ver figura abaixo.

Figura 2: Diagrama esquemático do capacitor “defeituoso”.

A distância entre as placas é d e a área de cada uma delas, S. Considere
√
S ≫ d. A permissividade elétrica do

meio pelo qual se move a lâmina é ε0. Assuma que a carga q da lâmina permanece distribúıda uniformemente
na sua área ao longo de todo o processo.

A. Encontre uma expressão para a diferença de potencial entre as placas do capacitor
em função do tempo.

4,5pt

B. Determine a dependência da corrente na bobina com o tempo durante o movimento
da lâmina entre as placas do capacitor.

4,5pt

C. Faça um gráfico qualitativo da corrente em função do tempo para o sistema em
questão.

1,0pt
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Q3 - Analogia eletro-magneto-gravitacional (10 pontos)

Parte A. Casca esférica carregada girando (3,0 pontos)

Considere uma casca esférica, de raio R, com densidade superficial de carga elétrica uniforme e igual a σ, girando

com uma velocidade angular ω. Sabe-se que
ωR

c
≪ 1.

A1. Encontre uma expressão para o vetor indução magnética B⃗ no centro da casca
esférica. Expresse sua resposta em função de σ, R, ω e µ0.

3,0pt

Figura 3: Casca carregada girando.

Parte B. Corpo carregado deformável no centro de uma casca esférica
carregada, girando (7,0 pontos)

Suponha que no centro da esfera tenha um pequeno corpo deformável de dimensões δ ≪ R, com densidades
volumétricas homogêneas de massa, ρ, e de carga elétrica, λ. Este objeto também gira, em torno do mesmo
eixo z, mas com velocidade angular Ω. O sistema é ilustrado na figura 4.

Figura 4: Casca carregada girando com corpo deformável na origem.
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Sabe-se que existe uma velocidade angular Ω⃗ ̸= 0 do corpo deformável no interior da esfera que rota, para a
qual o dito corpo mantém a forma que tem em ausência de interações que possam deformá-lo.

B1. Calcule a velocidade angular Ω⃗ em termos de grandezas fornecidas. Assuma que
os campos elétrico e magnético são homogêneos em todo o volume do corpo de-
formável.

2,5pt

B2. Encontre a carga ĺıquida superficial que iguala ambas as velocidades angulares,
ω⃗ e Ω⃗.

1,5pt

B3. Que sinais devem ter as cargas, superficial e do corpo deformável, para que este
último gire no mesmo sentido que a casca?

0,5pt

A analogia entre a lei de Coulomb e a lei de gravitação universal, no limite de campos fracos e pequenas
velocidades, permite descrever os efeitos gravitacionais através de analogias eletromagnéticas. De acordo com
isto, o sistema anterior é análogo a uma esfera coberta com uma densidade superficial de massa, σg, que gira, e
um corpo deformável no interior, análogo ao anterior, particularmente, na sua densidade de massa, ρ, ajustando
corretamente os parâmetros. Considere que este ajuste se obtêm substituindo as densidades de carga superficial
da esfera e volumétrica do corpo deformável segundo as regras: σ →

√
4πϵ0Gσg e λ →

√
4πϵ0Gρ.

B4. Utilize o resultado do item B2. e as regras de substituição dadas para determinar a
razão entre a massa ĺıquida superficial que igualaria as duas velocidades angulares

no caso gravitacional, e a massa de um buraco negro MBN =
c2R

2G
, com raio R igual

ao da casca.

2,5pt
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Q4 - Contando colisões relativ́ısticas (10 pontos)
Considere duas part́ıculas pontuais de massas (de repouso) M e m, se movendo ao longo do eixo x (fig. 5).
Inicialmente, a massa M se encontra com momento p0, andando em direção a massa m (em repouso). Após
a primeira colisão, a massa m é lançada em direção a parede, onde ela ira colidir e refletir, até colidir com M
novamente. Esse processo se repete, até a massa M eventualmente mudar de direção.

Figura 5: O estado inicial, antes da primeira colisão entre as massas M,m.

Este cenário é um problema famoso na mecânica clássica. Discutiremos a seguir a sua versão relativ́ıstica. O
objetivo será estimar o número N de colisões entre as massas até a direção de movimento de M se inverter.

Parte A: Caso clássico

Digamos que, em determinado instante, M encontra com momento p no eixo x, e está prestes a colidir com a
outra massa m se movendo com momento −q. Depois da colisão, ambas M e m se movem na mesma direção
com momentos p′ e q′ respectivamente (fig. 6).

Figura 6: O instante da colisão. Momentos (p,− q) (antes) se transformam em (p′, q′) (depois).

Assuma que todas as colisões, entre as massas e com a parede, são perfeitamente elásticas, e que as massas
deslizam sobre a superf́ıcie sem atrito.

A1. Escreva a equação de conservação de energia (relativ́ıstica) durante a colisão da
fig. 6, relacionando p,q, p′,q′,M,m, e a velocidade da luz c.

0,5pt

No resto da parte A, estudaremos o limite clássico, onde p, q ≪ M · c,m · c.

A2. Neste limite clássico, esboçe o espaço de fase do sistema. Isto é, desenhe um gráfico
2D, com eixos (p,q), representando os valores de momento admisśıveis dado apenas
a equação de conservação de energia. Indique pontos notáveis no seu esboço, em
função de M,m, p0.
Dica: O formato da curva é uma cônica.

0,5pt
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A3. Escreva a equação de conservação de momento durante a colisão da fig. 6, relacio-
nando p,q, p′,q′. Faria alguma diferença se as part́ıculas fossem relativ́ısticas?

0,5pt

No gráfico do espaço de fase do item b, o sistema inicialmente se encontra na coordenada (p0, 0). Agora,
estudaremos como o sistema evolui após as colisões, neste gráfico.

A4. No contexto da fig. 6 (e novamente, no caso clássico), digamos que o sistema se
encontre na coordenada (p, − q), onde p, q > 0. Faça outro esboço do espaço de
fase, e represente os pontos (p, − q) (antes da colisão) e (p′, q′) (depois) no seu
esboço. Represente também a configuração do sistema após m refletir na parede.

0,5pt

A5. Mostre que, no limite onde p0 ≪ m · c ≪ M · c, o número de colisões até M mudar
de direção é

Nclássico ≈ π

4

√
M

m
(2)

Dica: Normalize os eixos do espaço de fase, para o diagrama virar um ćırculo:
(p,q) → (p/

√
M, q/

√
m). Neste ćırculo, qual o ângulo entre (p,q) e (p′,q′)?

1,0pt

Parte B: Caso ultra-relativ́ıstico

No regime ultra-relativ́ıstico, as part́ıculas se movem com momentos muito maiores que seus respectivos momen-
tos de repouso, isto é, p ≫ m · c. Nessa situação, a energia total de cada part́ıcula é dominada pela contribuição
cinética, com o espaço de fases assumindo uma geometria caracteŕıstica desse limite extremo.

Na parte B, considere o limite onde o momento inicial p0 da massa M satisfaz:

p0 ≫ M · c, p0 ≫ m · c, p0 ≫ M2

m
· c, M ≫ m (9)

B1. Esboçe o espaço de fase (p,q) do sistema nesse limite ultra-relativ́ıstico.
Qual é o formato da figura encontrada?

1,5pt

B2. Neste limite, quantas colisões entre M,m são necessárias até M mudar de direção? 1,5pt

Parte C: Limite semi-relativ́ıstico

A suposição que m ≪ M abre as portas para um terceiro caso muito curioso, onde uma das part́ıculas (a
massona) é clássica, enquanto a outra (a massinha) é ultra-relativistica. Nesta parte C, estudaremos este limite
semi-relativ́ıstico, onde o momento inicial p0 da massa M satisfaz:

M · c2 ≫ p20
2M

≫ m · c2 (24)

O que faz esse limite tão curioso, é que o sistema passa por três estágios diferentes, onde

1. primeiramente, m começa em repouso, e inicialmente se comporta classicamente, porque q ≪ m · c.

2. Eventualmente, após várias colisões, q ∼ m · c, e ela começa a se comportar de modo relativ́ıstico.

3. Finalmente, q ≫ m · c, e a massinha vira ultra-relativ́ıstica.

Hoje, desprezaremos os primeiros dois estágios, e estudaremos apenas o terceiro para estimar o número de
colisões até M mudar de direção.
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C1. Usando a equação de conservação de energia neste limite semi-relativistico, já no
terceiro estágio (onde q ≫ m · c), mostre que o momento q da massinha satisfaz:

q ≈ m · c + f(M, p, p0, c) (25)

e encontre a função f(M, p, p0, c).

1,0pt

C2. No contexto da fig. 6, obtenha uma expressão aproximada para ∆p = p′ − p. Nova-
mente, considere o limite semi-relativ́ıstico.
Dê sua resposta em função apenas de q.

Dica: Pode ser útil a seguinte aproximação para |nx| ≪ 1:

(1 + x)n ≈ 1 + nx (26)

2,0pt

O caso semi-relativ́ıstico é bem mais complexo que os anteriores, logo consideramos um metódo diferente para
contar as colisões. Considere um limite cont́ınuo das colisões, onde o momento p(n) da massa M após a n-ésima
colisão (aproximadamente) satisfaz a seguinte equação diferencial:

d

dn
p(n) ≈ ∆p(n) (calculado no item acima) (27)

Por simplicidade, assuma que seu resultado na parte C.1 é válida sempre na região de momento da massa M p
de p0 até 0. Dado isso, usando a sua resposta dos dois itens acima, resolva:

C3. Estime o número de colisões N até M mudar de direção, neste limite semi-
relativ́ıstico, usando apenas a dinâmica do terceiro estágio.
Dê sua resposta em função de M,m, c e p0.

Dica: Utilize a seguinte integral∫ a

0

dx

b2 − x2
=

1

2b
ln

(
b+ a

b− a

)
, onde b > a > 0. (28)

1,0pt
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Q5 - Part́ıcula confinada em um poço com barreiras finas (10 pontos)
Considere uma part́ıcula quântica de massa m, em uma região unidimensional. A part́ıcula está inicialmente
confinada na região central −a

2 < x < a
2 , que chamaremos de “poço”. Nas bordas do poço existem duas

barreiras de potencial idênticas, cada uma de espessura ε ≪ a e altura V0, centradas nas posições x = −a
2 e

x = +a
2 . Fora dessas duas barreiras, o potencial é praticamente nulo e a part́ıcula, se escapar, pode se mover

livremente. Um diagrama simplificado do potencial efetivo é mostrado abaixo.

V (x) ≈


0, −a

2 < x < a
2 (interior do poço)

V0, regiões finas de largura ε em x = ±a
2

0, fora das barreiras

Assuma que sabemos que existe inicialmente uma part́ıcula dentro do poço.

A. Usando o prinćıpio da incerteza de Heisenberg, estime a altura mı́nima da barreira
de potencial V0 necessária para confinar a part́ıcula dentro da região −a

2 < x < a
2 .

Discuta como essa estimativa depende dos parâmetros a, m e ℏ.

4,0pt

Assuma agora que a energia média da part́ıcula é E, com E ≪ V0, tal que a probabilidade T seja pequena.
A part́ıcula está inicialmente confinada no poço, mas, por efeito de tunelamento quântico, existe uma pequena
probabilidade da part́ıcula atravessar uma das barreiras finas e escapar para fora. Admita que, ao incidir uma
única vez sobre uma parede, essa pequena probabilidade pode ser aproximada por

T ∼ exp
[
−α

√
V0ε

]
,

em que α é uma constante f́ısica de dimensões adequadas.

B. Utilize argumentos f́ısicos para estimar como α deve depender das constantes do
problema.

2,0pt

Eventuais fatores numéricos no parâmetro α podem ser desconsiderados para os objetivos de estimativa dessa
questão. A part́ıcula se move aproximadamente livre dentro do poço, batendo sucessivamente contra as barreiras
e tentando escapar a cada colisão com probabilidade T muito pequena em cada colisão.

C. Estime o tempo de meia-vida de confinamento da part́ıcula dentro do poço, isto é, o
tempo necessário para que a probabilidade de ainda encontrá-la no interior do poço
caia para metade do valor inicial. Sua resposta deve ser dada em termos de a, ε, m,
ℏ, E e V0.

4,0pt
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