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INSTRUCOES

. A prova é composta por 5 questoes. Sem contar essa folha de rosto, ela contém 8 péaginas.

. A duragao da prova é de 5 horas ininterruptas. O tempo de prova comega no instante

de acesso ao caderno de questoes.

Todas as respostas devem ser justificadas, ou seja, a resolugao da questao compre-
endida pelas principais etapas que levam as respostas deve ser apresentada.

As resolucgoes devem escritas de préoprio punho em folhas inicialmente em branco
(ndo use editores de texto). E permitido apenas o uso de caneta, de cor azul ou preta,
lapis preto de trago forte, régua e calculadora nao programavel.

As folhas com a resolug¢ao de cada questao devem ser escaneadas no formato PDF. Um
documento PDF (documento resposta) para cada questao.

Cada documento resposta deve ser enviado (submetido) através da correspondente inter-
face de respostas em https://app.graxaim.org/soif/2026.

Quando um documento resposta é enviado a questao é considerada respondida. Nao é
possivel enviar um documento para substituir outro ja enviado.

Vocé pode responder as questoes (enviar os documentos) em qualquer ordem. Atengao
para nao enviar o documento resposta de uma questao no lugar de outra.

Durante a prova, é permitido o uso de celular ou computador apenas para acessar o
site https://app.graxaim.org/soif/2026, ou para trocas de mensagens com 0s co-
ordenadores da SOIF através do endereco equipeobf@graxaim.org. Todos os demais
usos (aplicativos graficos e numéricos, consultas, busca na internet, etc) sao
proibidos.

Questoes enviadas apos do 5 horas do inicio da prova (acesso ao caderno de questoes) nao
serao avaliadas, apesar do sistema aceitar a submissao normalmente.



https://app.graxaim.org/soif/2026
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Q1 - Péndulo de barras compensadas (10 pontos)

Considere um péndulo fisico composto por trés barras delgadas e homogéneas, conectadas por duas pequenas
plataformas rigidas de espessura desprezivel, conforme o esquema conceitual abaixo.
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Figura 1: Diagrama esquematico do péndulo de barras compensadas.

As duas barras principais tém massa M; = M e comprimento L, = L, sendo ligadas paralelamente pelas
plataformas em suas extremidades. O sistema pode oscilar em torno de um pivo situado no centro da plataforma
superior, de modo que o conjunto se comporte como um corpo rigido oscilando em torno de um eixo horizontal
e perpendicular ao plano das barras.

Na extremidade inferior, presa & plataforma oposta, encontra-se uma barra auxiliar de massa My = M/2 e
comprimento Ly = L/2, orientada em direcdo ao pivd, isto é, apontando para cima. Todas as barras sdo
delgadas e homogéneas. As plataformas, assim como conexdes entre barras, tém massa desprezivel. O objetivo
do arranjo é reduzir a variacao do periodo de oscilagdo com respeito & variagdo da temperatura 6.

Considere que o movimento do sistema possa ser tratado como pequenas oscilacoes no plano vertical. A distancia
entre as duas barras principais é muito pequena quando comparada aos comprimentos L e L/2. A aceleracao
da gravidade é g, tomada constante.

A. Determine a distancia h do centro de massa com respeito ao pivo da oscilagao. 1,0pt
B. Determine o periodo T' de pequenas oscilacoes do péndulo descrito, em fungao de  3,0pt
M, Leg.

Admita agora que as barras principais e a barra auxiliar sofrem dilatagao térmica linear, com coeficientes de
dilatagao linear respectivamente dados por oy e as.

C. Determine o valor numérico da razao oy /as que garanta que o perfodo de oscilagao T 6,0pt
permaneca aproximadamente invariante frente a pequenas variagoes de temperatura.
Considere apenas termos de primeira ordem em Af.
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Q2 - Capacitor “defeituoso” (10 pontos)

De uma placa de um capacitor plano, descarregado, que se conecta, em paralelo, a uma bobina ideal de in-
duténcia L, se desprende uma lamina fina, de carga ¢ de dimensoes iguais as placas do capacitor. A lamina se
move com velocidade constante V' < ¢, na diregdo paralela as placas, ver figura abaixo.
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Figura 2: Diagrama esquematico do capacitor “defeituoso”.

A distancia entre as placas é d e a 4rea de cada uma delas, S. Considere v/S > d. A permissividade elétrica do
meio pelo qual se move a lamina é £9. Assuma que a carga ¢ da ldmina permanece distribuida uniformemente
na sua area ao longo de todo o processo.

A. Encontre uma expressao para a diferenca de potencial entre as placas do capacitor  4,5pt
em fungao do tempo.

B. Determine a dependéncia da corrente na bobina com o tempo durante o movimento  4,5pt
da lamina entre as placas do capacitor.

C. Faca um gréfico qualitativo da corrente em funcdo do tempo para o sistema em  1,0pt
questao.
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Q3 - Analogia eletro-magneto-gravitacional (10 pontos)

Parte A. Casca esférica carregada girando (3,0 pontos)

Considere uma casca esférica, de raio R, com densidade superficial de carga elétrica uniforme e igual a o, girando

wR
com uma velocidade angular w. Sabe-se que — < 1.
c

Al. Encontre uma expressao para o vetor indugao magnética B no centro da casca  3,0pt
esférica. Expresse sua resposta em funcao de o, R, w e pg.

Figura 3: Casca carregada girando.

Parte B. Corpo carregado deformavel no centro de uma casca esférica
carregada, girando (7,0 pontos)

Suponha que no centro da esfera tenha um pequeno corpo deforméavel de dimensoes § < R, com densidades
volumétricas homogéneas de massa, p, e de carga elétrica, A\. Este objeto também gira, em torno do mesmo
eixo z, mas com velocidade angular €. O sistema ¢é ilustrado na figura

Figura 4: Casca carregada girando com corpo deforméavel na origem.
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Sabe-se que existe uma velocidade angular € # 0 do corpo deformével no interior da esfera que rota, para a
qual o dito corpo mantém a forma que tem em auséncia de interagoes que possam deforma-lo.

B1. Calcule a velocidade angular Q em termos de grandezas fornecidas. Assuma que  2,5pt
os campos elétrico e magnético sao homogéneos em todo o volume do corpo de-
formével.

B2. Encontre a carga liquida superficial que iguala ambas as velocidades angulares, 1,5pt
@ e €.

B3. Que sinais devem ter as cargas, superficial e do corpo deforméavel, para que este  0,5pt
dltimo gire no mesmo sentido que a casca?

A analogia entre a lei de Coulomb e a lei de gravitacao universal, no limite de campos fracos e pequenas
velocidades, permite descrever os efeitos gravitacionais através de analogias eletromagnéticas. De acordo com
isto, o sistema anterior é andlogo a uma esfera coberta com uma densidade superficial de massa, o4, que gira, e
um corpo deformével no interior, andlogo ao anterior, particularmente, na sua densidade de massa, p, ajustando
corretamente os pardmetros. Considere que este ajuste se obtém substituindo as densidades de carga superficial
da esfera e volumétrica do corpo deformével segundo as regras: ¢ — /4megGog e A — /4megGp.

B4.

Utilize o resultado do item B2. e as regras de substituicao dadas para determinar a

razao entre a massa liquida superficial que igualaria as duas velocidades angulares

AR

2G

no caso gravitacional, e a massa de um buraco negro Mgy = , com raio R igual

ao da casca.

2,5pt
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Q4 - Contando colisoes relativisticas (10 pontos)

Considere duas particulas pontuais de massas (de repouso) M e m, se movendo ao longo do eixo z (fig. ).
Inicialmente, a massa M se encontra com momento pg, andando em dire¢cdo a massa m (em repouso). Apds
a primeira colisao, a massa m é lancada em direcao a parede, onde ela ira colidir e refletir, até colidir com M
novamente. Esse processo se repete, até a massa M eventualmente mudar de diregao.
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Figura 5: O estado inicial, antes da primeira colisao entre as massas M,m.

Este cenario é um problema famoso na mecanica cléssica. Discutiremos a seguir a sua versao relativistica. O
objetivo sera estimar o nimero N de colisoes entre as massas até a direcao de movimento de M se inverter.

Parte A: Caso classico

Digamos que, em determinado instante, M encontra com momento p no eixo x, e estd prestes a colidir com a
outra massa m se movendo com momento —q. Depois da colisao, ambas M e m se movem na mesma dire¢ao
com momentos p’ e q’ respectivamente (fig. @

16 \TEé

Figura 6: O instante da colisao. Momentos (p, — q) (antes) se transformam em (p’,q’) (depois).

Assuma que todas as colisdes, entre as massas e com a parede, sdo perfeitamente eldsticas, e que as massas
deslizam sobre a superficie sem atrito.

Al. Escreva a equagao de conservacao de energia (relativistica) durante a colisdao da  0,5pt
fig. [6] relacionando p,q,p’,q’, M, m, e a velocidade da luz c.

No resto da parte A, estudaremos o limite classico, onde p,q < M -¢,m - c.

A2. Neste limite classico, esboge o espaco de fase do sistema. Isto é, desenhe um grafico  0,5pt
2D, com eixos (p,q), representando os valores de momento admissiveis dado apenas
a equagao de conservagao de energia. Indique pontos notaveis no seu esbogo, em
fungao de M, m, pg.
Dica: O formato da curva é uma conica.
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A3. Escreva a equacgao de conservagao de momento durante a colisao da fig. [6] relacio-  0,5pt
nando p,q, p’,q’. Faria alguma diferenca se as particulas fossem relativisticas?

No grafico do espago de fase do item b, o sistema inicialmente se encontra na coordenada (pg,0). Agora,
estudaremos como o sistema evolui apos as colisoes, neste grafico.

A4. No contexto da fig. @] (e novamente, no caso cldssico), digamos que o sistema se  0,5pt
encontre na coordenada (p, — q), onde p,q > 0. Faca outro esbogo do espago de
fase, e represente os pontos (p, — q) (antes da colisdo) e (p’,q’) (depois) no seu
esboco. Represente também a configuracao do sistema ap6s m refletir na parede.

AS5. Mostre que, no limite onde pg < m-c¢ < M- ¢, o nimero de colisoes até M mudar 1,0pt
de direcao é
T M

Ncléssico ~ Z E (2)

Dica: Normalize os eixos do espago de fase, para o diagrama virar um circulo:
(p,q) = (p/vM, q/+/m). Neste circulo, qual o dngulo entre (p,q) e (p’,q’)?

Parte B: Caso ultra-relativistico

No regime ultra-relativistico, as particulas se movem com momentos muito maiores que seus respectivos momen-
tos de repouso, isto é, p > m-c. Nessa situacao, a energia total de cada particula é dominada pela contribuicao
cinética, com o espago de fases assumindo uma geometria caracteristica desse limite extremo.

Na parte B, considere o limite onde o momento inicial py da massa M satisfaz:

M2
po>M-c, pg>m-c, p0>>?-c, M > m (9)
B1. Esboge o espaco de fase (p,q) do sistema nesse limite ultra-relativistico. 1,5pt
Qual é o formato da figura encontrada?
B2. Neste limite, quantas colisdes entre M, m sdo necessarias até M mudar de diregao? 1,5pt

Parte C: Limite semi-relativistico

A suposicdo que m < M abre as portas para um terceiro caso muito curioso, onde uma das particulas (a
massona) é cldssica, enquanto a outra (a massinha) é ultra-relativistica. Nesta parte C, estudaremos este limite
semi-relativistico, onde o momento inicial pg da massa M satisfaz:

M-¢2 > -2 > m.¢ (24)

O que faz esse limite tdo curioso, é que o sistema passa por trés estagios diferentes, onde
1. primeiramente, m comega em repouso, e inicialmente se comporta classicamente, porque g < m - c.
2. Eventualmente, apds varias colisoes, g ~ m - ¢, e ela comega a se comportar de modo relativistico.
3. Finalmente, g > m - ¢, e a massinha vira ultra-relativistica.

Hoje, desprezaremos os primeiros dois estagios, e estudaremos apenas o terceiro para estimar o nimero de
colisoes até M mudar de diregao.
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C1. Usando a equagao de conservacao de energia neste limite semi-relativistico, ja no  1,0pt
terceiro estdgio (onde q > m - ¢), mostre que o momento q da massinha satisfaz:

qgrRm-c + f(Mvpvp()ac) (25)

e encontre a fungao f(M, p, pg, ¢).

C2. No contexto da fig. [6] obtenha uma expressio aproximada para Ap = p’ —p. Nova-  2,0pt
mente, considere o limite semi-relativistico.
Dé sua resposta em funcao apenas de q.

Dica: Pode ser 1itil a seguinte aproximagao para |nz| < 1:

14+z)"~1+nz (26)

O caso semi-relativistico é bem mais complexo que os anteriores, logo consideramos um metoédo diferente para
contar as colisées. Considere um limite continuo das colisdes, onde o momento p(n) da massa M apés a n-ésima
colisao (aproximadamente) satisfaz a seguinte equagao diferencial:

d
d—p(n) ~ Ap(n) (calculado no item acima) (27)
n

Por simplicidade, assuma que seu resultado na parte C.1 é valida sempre na regiao de momento da massa M p
de pp até 0. Dado isso, usando a sua resposta dos dois itens acima, resolva:

C3. Estime o ntimero de colisoes N até M mudar de direcao, neste limite semi- 1,0pt
relativistico, usando apenas a dinamica do terceiro estéagio.
Dé sua resposta em funcao de M, m, c e pg.

Dica: Utilize a seguinte integral

/dxlln<b+a>, onde b>a>0. (28)
0

b2 —22 2 b—a
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Q5 - Particula confinada em um pogo com barreiras finas (10 pontos)

Considere uma particula quantica de massa m, em uma regiao unidimensional. A particula estd inicialmente

confinada na regiao central —5 < x < g, que chamaremos de “pogo”. Nas bordas do pogo existem duas
barreiras de potencial idénticas, cada uma de espessura ¢ < a e altura Vp, centradas nas posicoes z = —5 e
x = +3. Fora dessas duas barreiras, o potencial é praticamente nulo e a particula, se escapar, pode se mover

livremente. Um diagrama simplificado do potencial efetivo é mostrado abaixo.

0, —§<z<g (interior do poco)
V(z)~ Vo, regioes finas de largura ¢ em x = +%

0, fora das barreiras

Assuma que sabemos que existe inicialmente uma particula dentro do pogo.

A. Usando o principio da incerteza de Heisenberg, estime a altura minima da barreira  4,0pt
de potencial Vj necesséria para confinar a particula dentro da regiao —§ <z < 3.
Discuta como essa estimativa depende dos parametros a, m e h.

Assuma agora que a energia média da particula é E, com E < Vj, tal que a probabilidade T seja pequena.
A particula estd inicialmente confinada no pogo, mas, por efeito de tunelamento quantico, existe uma pequena
probabilidade da particula atravessar uma das barreiras finas e escapar para fora. Admita que, ao incidir uma
tnica vez sobre uma parede, essa pequena probabilidade pode ser aproximada por

T ~ exp {—a Voe} ,

em que « é uma constante fisica de dimensoes adequadas.

B. Utilize argumentos fisicos para estimar como « deve depender das constantes do  2,0pt
problema.

Eventuais fatores numéricos no parametro o podem ser desconsiderados para os objetivos de estimativa dessa
questao. A particula se move aproximadamente livre dentro do pogo, batendo sucessivamente contra as barreiras
e tentando escapar a cada colisdo com probabilidade T" muito pequena em cada colisao.

C. Estime o tempo de meia-vida de confinamento da particula dentro do poco, isto é, 0 4,0pt
tempo necessario para que a probabilidade de ainda encontré-la no interior do pogo
caia para metade do valor inicial. Sua resposta deve ser dada em termos de a, €, m,
h, EeVj.




