
SELETIVA 2 SOIF 2026

Q1 - Pêndulo de barras compensadas (10 pontos)
Considere um pêndulo f́ısico composto por três barras delgadas e homogêneas, conectadas por duas pequenas
plataformas ŕıgidas de espessura despreźıvel, conforme o esquema conceitual abaixo.

Figura 1: Diagrama esquemático do pêndulo de barras compensadas.

As duas barras principais têm massa M1 = M e comprimento L1 = L, sendo ligadas paralelamente pelas
plataformas em suas extremidades. O sistema pode oscilar em torno de um pivô situado no centro da plataforma
superior, de modo que o conjunto se comporte como um corpo ŕıgido oscilando em torno de um eixo horizontal
e perpendicular ao plano das barras.

Na extremidade inferior, presa à plataforma oposta, encontra-se uma barra auxiliar de massa M2 = M/2 e
comprimento L2 = L/2, orientada em direção ao pivô, isto é, apontando para cima. Todas as barras são
delgadas e homogêneas. As plataformas, assim como conexões entre barras, têm massa despreźıvel. O objetivo
do arranjo é reduzir a variação do peŕıodo de oscilação com respeito à variação da temperatura θ.

Considere que o movimento do sistema possa ser tratado como pequenas oscilações no plano vertical. A distância
entre as duas barras principais é muito pequena quando comparada aos comprimentos L e L/2. A aceleração
da gravidade é g, tomada constante.

A. Determine a distância h do centro de massa com respeito ao pivô da oscilação. 1,0pt

Gabarito:

A.

As duas barras principais (cada uma com massaM e comprimento L) estão presas pela plataforma superior
no pivô e se estendem para baixo. Cada barra homogênea tem seu centro de massa a uma distância L/2
abaixo do pivô. Como há duas barras idênticas, a contribuição total de massa dessas barras é 2M , e seu
centro de massa efetivo está a L/2 do pivô.

A barra auxiliar tem massa M/2 e comprimento L/2, e está presa pela plataforma inferior voltada para
cima, em direção ao pivô. Logo, seu extremo mais alto está na plataforma inferior, cuja posição está a uma
distância L abaixo do pivô (pois coincide com as extremidades inferiores das barras principais). Assim,
medindo a partir do pivô para baixo como sentido positivo, a barra auxiliar ocupa a faixa de posições entre
y = L− L

2 = L
2 e y = L. O centro de massa dessa barra está, portanto, a uma distância média entre essas

extremidades, isto é,

yaux =
L
2 + L

2
=

3L

4
.

1
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Logo:

massa total Mtot = 2M +
M

2
=

5M

2
.

Escolhendo o pivô como origem vertical y = 0, com y > 0 apontando para baixo, temos:

ycm = h =

2M ·
(
L

2

)
+
M

2
·
(
3L

4

)
Mtot

=
2M · L

2
+ M

2 · 3L
4

5M

2

.

Portanto, a distância entre o pivô e o centro de massa total é

h =
11

20
L.

Critério de correção (4,0 pt).

• 0,5 pt: Expressão correta de h.
• 0,5 pt: Resultado final correto.

B. Determine o peŕıodo T de pequenas oscilações do pêndulo descrito, em função de
M , L e g.

3,0pt

Gabarito:

B.

i) Determinar o momento de inércia total I em torno do pivô.

Para cada barra principal (massa M , comprimento L, pivô em uma das extremidades), o momento de
inércia em torno do pivô é

Ibarra princ =
1

3
ML2.

Como existem duas barras idênticas:

I(duas princ) = 2 · 1
3
ML2 =

2

3
ML2.

Agora a barra auxiliar. Ela é uma barra homogênea de massa M/2 e comprimento L/2 cujo eixo está
deslocado. Para uma barra uniforme, podemos usar o teorema dos eixos paralelos: o momento de inércia
em torno do centro de massa da barra é

Icm,aux =
1

12
mℓ2 =

1

12

(
M

2

)(
L

2

)2

=
1

12
· M
2

· L
2

4
=
ML2

96
.

A distância entre o pivô e o centro de massa da barra auxiliar é yaux = 3L/4. Assim, pelo teorema dos
eixos paralelos:

Iaux = Icm,aux +my 2
aux =

ML2

96
+

(
M

2

)(
3L

4

)2

=
ML2

96
+
M

2
· 9L

2

16
=

7ML2

24
.

Portanto, o momento de inércia total é

I = I(duas princ) + Iaux =
2

3
ML2 +

7

24
ML2 =ML2

(
2

3
+

7

24

)
=ML2

(
16

24
+

7

24

)
=ML2 · 23

24
=

23

24
ML2.
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ii) Calcular o peŕıodo do pêndulo.

A expressão geral para um pêndulo f́ısico é

T = 2π

√
I

Mtot g h
.

Substituindo os valores encontrados anteriormente na fórmula:

T = 2π

√
23

33

L

g
.

Critério de correção (4,0 pt).

• 1,5 pt: determinação correta de I.
• 1,5 pt: substituição dos resultados anteriores em T = 2π

√
I/(Mtotgh) e expressão final correta.

Admita agora que as barras principais e a barra auxiliar sofrem dilatação térmica linear, com coeficientes de
dilatação linear respectivamente dados por α1 e α2.

C. Determine o valor numérico da razão α1/α2 que garanta que o peŕıodo de oscilação T
permaneça aproximadamente invariante frente a pequenas variações de temperatura.
Considere apenas termos de primeira ordem em ∆θ.

6,0pt

Gabarito:

(C)

Agora considere a dilatação térmica. Para pequenas variações de temperatura ∆T :

L1 = L −→ L′
1 = L(1 + α1∆T ), L2 =

L

2
−→ L′

2 =
L

2
(1 + α2∆T ).

Isso altera:

• o momento de inércia total I;

• a distância h entre o pivô e o centro de massa total.

Portanto, o peŕıodo do pêndulo pode ser, no caso geral, modificado por variações de temperatura. Para
que o peŕıodo seja termicamente estável a primeira ordem, exigimos que T não varie linearmente com θ.
Ou seja,

dT

dθ
= 0.

Como

T = 2π

√
I

Mtotgh
,

com Mtot constante (as massas não mudam com a temperatura), basta impor que a fração I/h não varie
linearmente com ∆T . Em outras palavras, exigimos

d

dθ

(
I

h

)
= 0.

3
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Essa condição é satisfeita se tivermos, em primeira ordem, umas mesma variação percentual das quantidades
I e h. Isto é:

∆I

I.∆θ
=

∆h

h.∆θ
. (1)

Sem perda de generalidade, podemos assumir valores unitários de L e M para simplificar as expressões a
seguir. É necessário agora, a partir das expressões de I e h em termos de L1 e L2, descobrir como essas
quantidades variam com variações de temperatura em termos de α1 e α2. Veja:

• Cálculo de ∆h:

O centro de massa está em

h =
3L1 − 1

2L2

5
.

Com L1 = 1 + α1∆θ e L2 = 1
2 (1 + α2∆θ), obtemos, a primeira ordem,

∆h

h∆θ
=

12α1 − α2

11
.

• Cálculo de ∆I:

O momento de inércia total é

I =
1

6

(
7L2

1 − 3L1L2 + L2
2

)
.

Substituindo os comprimentos dilatados e expandindo a primeira ordem,

∆I

I∆θ
=

2(25α1 − 2α2)

23
.

Substituindo ambos os resultados na condição (1), segue

2(25α1 − 2α2)

23
=

12α1 − α2

11
,

e assim obtemos a razão desejada
α1

α2
=

21

274
.

Critério de correção (6,0 pt).

• 1,0 pt: identificação correta das grandezas afetadas pela dilatação térmica e escrita das dilatações
lineares L1 → L1(1 + α1∆θ) e L2 → L2(1 + α2∆θ).

• 1,0 pt: Reconhecimento da dependência térmica de I e h.
• 1,0 pt: expansão correta de I e h até primeira ordem em ∆θ.
• 2,0 pt: obtenção da relação ∆I/I = ∆h/h a partir da invariância do peŕıodo.
• 1,0 pt: valor correto da razão α1/α2.
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Q2 - Capacitor “defeituoso”(10 pontos)
De uma placa de um capacitor plano, descarregado, que se conecta, em paralelo, a uma bobina ideal de in-
dutância L, se desprende uma lâmina fina, de carga q de dimensões iguais às placas do capacitor. A lâmina se
move com velocidade constante V ≪ c, na direção paralela às placas, ver figura abaixo.

Figura 2: Diagrama esquemático do capacitor “defeituoso”.

A distância entre as placas é d e a área de cada uma delas, S. Considere
√
S ≫ d. A permissividade elétrica do

meio pelo qual se move a lâmina é ε0. Assuma que a carga q da lâmina permanece distribúıda uniformemente
na sua área ao longo de todo o processo.

A. Encontre uma expressão para a diferença de potencial entre as placas do capacitor
em função do tempo.

4,5pt

Gabarito:

A. A placa, inicialmente está descarregada. Da figura ??, temos que

EI = E1 − E2

E1 =
σ1
2ε0

= −Q(t) + q

2ε0S

E2 =
σ2
2ε0

=
q

2ε0S
.

Então, para a região I,

|EI(t)| = |E1 − E2| = |−Q(t)− q

2ε0S
− q

2ε0S
| = |−Q(t)− 2q

2ε0S
| = Q(t) + 2q

2ε0S
.

Para a região II,

5
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EII = E3 − E2

E3 =
σ3
2ε0

=
Q(t)

2ε0S

Dáı,

EII(t) =
Q(t)

2ε0S
− q

2ε0S
=
Q(t)− q

2ε0S

A diferença de potencial entre as placas, por sua vez, é dada por

U(t) = EI(t)dI + EII(t)dII

U(t) =
Q(t) + 2q

2ε0S
.V t+

Q(t)− q

2ε0S
.(d− V t)

U(t) =
Q(t)d

2ε0S
+

3

2

qV t

ϵ0S
− qd

2ε0S
=

[Q(t)− q]d+ 3qV t

2ε0S
.

Critério de correção (4,5 pt).

• 2,0 pt: determinação correta de EI .
• 1,5 pt: determinação correta de EII .
• 1,0 pt: pela expressão correta de U(t).

B. Determine a dependência da corrente na bobina com o tempo durante o movimento
da lâmina entre as placas do capacitor.

4,5pt

Gabarito:

B. Da lei das malhas...

−LdI
dt

− U(t) = −L∆I

∆t
−
[
[Q(t)− q]d+ 3qV t

2ε0S

]
= 0

Dáı...
dI

dt
+

[Q(t)− q]d+ 3qV t

2ε0SL
= 0

Derivando no tempo...

d2I(t)

dt2
+

dQ(t)
dt d+ 3qV

2ε0S
= 0 ⇒ d2I(t)

dt2
+

(
d

2ε0SL

)
I(t) +

3qV

2ε0SL
= 0

6
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Solução: fazendo a seguinte troca de variáveis

i(t) = I(t) +
3qV

d
⇒ d2i(t)

dt2
+

d

2ε0SL
i(t) = 0

Portanto...

I(t) = A cosωt+B sinωt− 3qV

d

onde

ω =

√
d

2ε0SL

Em t = 0, I(0) = 0, então... A = 3qV
d então

I(t) =
3qV

d
cos

√
d

2ϵ0SL
t+B sin

√
d

2ϵ0SL
t

Em t = 0 não há voltagem na bobina, então

L
dI(0)

dt
= 0 ⇒ dI(0)

dt
= 0 = B

√
d

2ϵ0SL
= 0 ⇒ B = 0

Assim...

I(t) =
3qV

d

(
cos

√
d

2ϵ0SL
t− 1

)

Critério de correção (4,5 pt).

• 2,5 pt: pela equação diferencial para a corrente.
• 2,0 pt: pela expressão final, incluindo a expressão de ω.

C. Faça um gráfico qualitativo da corrente em função do tempo para o sistema em
questão.

1,0pt

Gabarito:

C.

Critério de correção (1,0 pt).

• 1,0 pt: desenho qualitativo correto do gráfico.

7
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Q3 - Analogia eletro-magneto-gravitacional (10 pontos)

Parte A. Casca esférica carregada girando (3,0 pontos)

Considere uma casca esférica, de raio R, com densidade superficial de carga elétrica uniforme e igual a σ, girando

com uma velocidade angular ω. Sabe-se que
ωR

c
≪ 1.

A1. Encontre uma expressão para o vetor indução magnética B⃗ no centro da casca
esférica. Expresse sua resposta em função de σ, R, ω e µ0.

3,0pt

Figura 3: Casca carregada girando.

Gabarito:

A1. Uma casca esférica uniformemente carregada girando cria correntes na superf́ıcie. Dividindo a esfera
em anéis de raio a = R sin θ (ver figura 3):

dq = σ(2πa)Rdθ = 2πσaRdθ

δi =
dq

T
=
dq

2π
ω =

2πσaRdθω

2π
= σaRωdθ

dB⃗ =
µ0

4π

Id⃗l × R⃗

R3

d⃗l = (R sin θ)dϕϕ̂ = dlϕ̂

A corrente δi é a corrente correspondente a apenas um anel. As componentes radiais do campo se cancelam
e as verticais se somam.

Assim

dB⃗ =
µ0Idl

4πR2
cosψẑ =

µ0Idl

4πR2

a

R
ẑ =

µ0Idla

4πR3
ẑ

Integrando para esse anel, em dl:

δB⃗z =
µ0I2πa

2

4πR3
ẑ =

µ0Ia
2

2R3
ẑ

Aqui chamamos δB⃗z ao campo do anel, que é um diferencial do campo da casca inteira. Então, substituindo
a = R sin θ e usando a corrente δi, para a casca temos, integrando em θ, de 0− π:

Bz =

∫
µ0

2

σR2ω sin θdθR2 sin2 θ

R3
=

2

3
µ0σRω

8
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Critério de correção (3,0 pt).

• 2,0 pt: expressão correta de δB⃗z.
• 1,0 pt: expressão final de B⃗z.

Parte B. Corpo carregado deformável no centro de uma casca esférica
carregada, girando (7,0 pontos)

Suponha que no centro da esfera tenha um pequeno corpo deformável de dimensões δ ≪ R, com densidades
volumétricas homogêneas de massa, ρ, e de carga elétrica, λ. Este objeto também gira, em torno do mesmo
eixo z, mas com velocidade angular Ω. O sistema é ilustrado na figura 4.

Figura 4: Casca carregada girando com corpo deformável na origem.

Sabe-se que existe uma velocidade angular Ω⃗ ̸= 0 do corpo deformável no interior da esfera que rota, para a
qual o dito corpo mantém a forma que tem em ausência de interações que possam deformá-lo.

B1. Calcule a velocidade angular Ω⃗ em termos de grandezas fornecidas. Assuma que
os campos elétrico e magnético são homogêneos em todo o volume do corpo de-
formável.

2,5pt

Gabarito:

B1. A força de Lorentz, sobre um elemento de carga δq, do corpo no centro da casca é

f⃗L = δq[E⃗(r⃗) + v⃗ × B⃗(r⃗)] = λδV [E⃗(r⃗) + v⃗ × B⃗(r⃗)]

O campo elétrico no centro da casca é nulo, então

f⃗L = λδV [v⃗ × B⃗(r⃗)]

Do item anterior, sabemos que B⃗ não depende de r⃗, assim

f⃗L = λδV [v⃗ × B⃗]

Da segunda lei de Newton

f⃗L = δm
dv⃗

dt
⇒ λδV (v⃗ × B⃗) = δm

d

dt
(Ω× r⃗) = δm

(
Ω× dr⃗

dt

)
= δm (Ω× v⃗) = −δm (v⃗ × Ω)

9
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onde r⃗ é o vetor de posição do elemento de massa (carga) do corpo.

λδV (v⃗ × B⃗) = −ρδV (v⃗ × Ω) ⇒ λ(v⃗ × B⃗) + ρ(v⃗ × Ω) = 0

Dai
v⃗ × (λB⃗ + ρΩ⃗) = 0 ⇒ λB⃗ = −ρΩ⃗

Finalmente

Ω⃗ = −λ
ρ
B⃗ = −λ

ρ

2µ0Rωσ

3
ẑ

Critério de correção (2,0 pt).

• 1,5 pt: expressão correta de f⃗L = −δm( ⃗v × Ω).

• 1,0 pt: expressão final para Ω⃗.

B2. Encontre a carga ĺıquida superficial que iguala ambas as velocidades angulares,
ω⃗ e Ω⃗.

1,5pt

Gabarito:

B2. Usando o resultado do item anterior

Ω = ω = −λ
ρ

2µ0Rωσ

3
⇒ |σ| = 3ρ

2πµ0|λ|R
.

Dáı

Q = 4πR2|σ| = 6πρR

µ0λ

Critério de correção (1,5 pt).

• 1,0 pt: expressão correta de σ.
• 0,5 pt: expressão final para Q.

B3. Que sinais devem ter as cargas, superficial e do corpo deformável, para que este
último gire no mesmo sentido que a casca?

0,5pt

Gabarito:

B3. A partir da expressão de Ω⃗, vemos que, se σ e λ tem sinais opostos, Ω é positiva, ou seja, terá o mesmo
sentido que ω⃗. Isto é compat́ıvel com o fato da força de interação entre a casca e o corpo ser atrativa, dessa
forma, a casca “arrasta”o corpo à rotação.

Critério de correção (0,5 pt).

• 0,5 pt: pela explicação acima ou outra semelhante, aceitável.

A analogia entre a lei de Coulomb e a lei de gravitação universal, no limite de campos fracos e pequenas
velocidades, permite descrever os efeitos gravitacionais através de analogias eletromagnéticas. De acordo com
isto, o sistema anterior é análogo a uma esfera coberta com uma densidade superficial de massa, σg, que gira, e
um corpo deformável no interior, análogo ao anterior, particularmente, na sua densidade de massa, ρ, ajustando
corretamente os parâmetros. Considere que este ajuste se obtêm substituindo as densidades de carga superficial
da esfera e volumétrica do corpo deformável segundo as regras: σ →

√
4πϵ0Gσg e λ→

√
4πϵ0Gρ.

10
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B4. Utilize o resultado do item B2. e as regras de substituição dadas para determinar a
razão entre a massa ĺıquida superficial que igualaria as duas velocidades angulares

no caso gravitacional, e a massa de um buraco negroMBN =
c2R

2G
, com raio R igual

ao da casca.

2,5pt

Gabarito:

B4. Usando as substituições propostas
λ→

√
4πϵ0Gρ

σ →
√

4πϵ0Gσg

Q =
6πρR

µ0λ
=

6πρR

µ0

√
4πϵ0Gρ

= 4πR2σ = 4πR2
√

4πϵ0Gσg

Dai

Mg =
6πR

µ04πϵ0G
=

3Rc2

2G
= 3MBN

Critério de correção (2,5 pt).

• 1,5 pt: pelas expressão correta de Q que leva à igualdade relacionando ρ e σg.
• 1,0 pt: pela expressão final para Mg.

11
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Q4 - Contando colisões relativ́ısticas (10 pontos)
Considere duas part́ıculas pontuais de massas (de repouso) M e m, se movendo ao longo do eixo x (fig. 5).
Inicialmente, a massa M se encontra com momento p0, andando em direção a massa m (em repouso). Após
a primeira colisão, a massa m é lançada em direção a parede, onde ela ira colidir e refletir, até colidir com M
novamente. Esse processo se repete, até a massa M eventualmente mudar de direção.

Figura 5: O estado inicial, antes da primeira colisão entre as massas M,m.

Este cenário é um problema famoso na mecânica clássica. Discutiremos a seguir a sua versão relativ́ıstica. O
objetivo será estimar o número N de colisões entre as massas até a direção de movimento de M se inverter.

Parte A: Caso clássico

Digamos que, em determinado instante, M encontra com momento p no eixo x, e está prestes a colidir com a
outra massa m se movendo com momento −q. Depois da colisão, ambas M e m se movem na mesma direção
com momentos p′ e q′ respectivamente (fig. 6).

Figura 6: O instante da colisão. Momentos (p,− q) (antes) se transformam em (p′, q′) (depois).

Assuma que todas as colisões, entre as massas e com a parede, são perfeitamente elásticas, e que as massas
deslizam sobre a superf́ıcie sem atrito.

A1. Escreva a equação de conservação de energia (relativ́ıstica) durante a colisão da
fig. 6, relacionando p,q, p′,q′,M,m, e a velocidade da luz c.

0,5pt

No resto da parte A, estudaremos o limite clássico, onde p, q ≪ M · c,m · c.

A2. Neste limite clássico, esboçe o espaço de fase do sistema. Isto é, desenhe um gráfico
2D, com eixos (p,q), representando os valores de momento admisśıveis dado apenas
a equação de conservação de energia. Indique pontos notáveis no seu esboço, em
função de M,m, p0.
Dica: O formato da curva é uma cônica.

0,5pt

12
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A3. Escreva a equação de conservação de momento durante a colisão da fig. 6, relacio-
nando p,q, p′,q′. Faria alguma diferença se as part́ıculas fossem relativ́ısticas?

0,5pt

No gráfico do espaço de fase do item b, o sistema inicialmente se encontra na coordenada (p0, 0). Agora,
estudaremos como o sistema evolui após as colisões, neste gráfico.

A4. No contexto da fig. 6 (e novamente, no caso clássico), digamos que o sistema se
encontre na coordenada (p, − q), onde p, q > 0. Faça outro esboço do espaço de
fase, e represente os pontos (p, − q) (antes da colisão) e (p′, q′) (depois) no seu
esboço. Represente também a configuração do sistema após m refletir na parede.

0,5pt

A5. Mostre que, no limite onde p0 ≪ m · c ≪ M · c, o número de colisões até M mudar
de direção é

Nclássico ≈ π

4

√
M

m
(2)

Dica: Normalize os eixos do espaço de fase, para o diagrama virar um ćırculo:
(p,q) → (p/

√
M, q/

√
m). Neste ćırculo, qual o ângulo entre (p,q) e (p′,q′)?

1,0pt

Gabarito:

A1) Por conservação de energia, temos:

E =
√
p2c2 +M2c4 +

√
q2 +m2c4 =

√
p′2c2 +M2c4 +

√
q′2c2 +m2c4 (3)

Marking Scheme:

• +0,5 pontos por escrever a expressão correta de E

A2) Classicamente, temosM ·c≫ p e m ·c≫ q, e a equação de conservação de energia nesse limite implica:

E =
p2

2M
+

q2

2m
(4)

Dado que energia é conservada e originalmente temos E =
p2
0

2M :

(
p0√
M

)2

=

(
p√
M

)2

+

(
q√
m

)2

(5)

Que implica uma elipse para p,q, como esboçado abaixo:
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Note que qmax acima, é dado por:

p20
2M

=
q2max

2m
=⇒ qmax = p0

√
m/M. (6)

Marking Scheme:

• +0,2 pontos por reconhecer que no limite clássico temos E = p2

2M + q2

2m

• +0,1 pontos pelo esboço da elipse

• +0,1 pontos por indicar os pontos (±p0,0) e (±0, qmax)

• +0,1 pontos pela expressão correta de qmax no esboço

A3)

Por conservação de momento:

p− q = p′ + q′ (7)

Essa equção é valida sempre.

Marking Scheme:

• +0,4 pontos pela equação de conservação de momento

• +0,1 pontos por indicar que é valida sempre

• Não penalize caso o aluno escreva p+ q = p′ + q′ desde que reconheça que q é negativo

A4)

No espaço de fases, podemos obter o estado do sistema depois da colisão (p′,q′) obtendo a intersecção da
elipse de p,q com a equação de conservação de momento, p′ + q′ = Constante, como na figura abaixo entre
os pontos (p,− q) e (p′,q′)

Depois da colisão com a parede, temos que o momento da massa m se inverte, que corresponde a uma
reflexão no plano x, como a seta entre os pontos (p′,q′) e (p′′,q′′) acima.

Marking Scheme:

• +0,3 pontos por notar graficamente que apos a colisão pode se obter (p′,q′) pela interseção entre a
elipse do espaço de fases e conservação de momento.

• +0,2 pontos por notar que graficamente a colisão com a parede representa uma reflexão pelo eixo
horizontal

14
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A5)

Dada a dica, vamos escalar a equação da elipse p,q por 1/
√
M, 1/

√
m respectivamente, da forma x =

p/
√
M,y = q/

√
m para que a equação da elipse se torne x2 + y2 = Constante. Dessa forma, o espaço de

fases para x,y define um circulo.

Alem disso, note que por conservaçao de momento, apos cada colisão temos p + q = Constante =⇒
x
√
M+y

√
m = Constante. Ou seja, conservação de momento implica uma reta no plano x,y com inclinação

−
√
M/m.

Alem disso, perceba que apos cada colisão o momento da massam se inverte, logo temos a seguinte trajetoria
no espaço de fases (e também no sistema de coordenadas x,y):

Os graficos acima são com M = 100,m = 1, v0 = c/1000. Note que apos cada colisão entre as massas, e
depois com a parede, temos que um ponto (x,y) é rotacionado por um angulo θ = 2

√
m/M ao longo do

circulo, e apos N colisões tal que Nθ = π/2 a direção de m se inverte. Assim, obtemos que com N :

N ≈ π

4

√
M

m
(8)

colisões M muda de direção.

15
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Marking Scheme:

• +0,4 pontos por notar que no sistema x = p/
√
M,y = q/

√
m o espaço de fases é um circulo

• +0,1 pontos por notar que o angulo entre (p,q) e (p′,q′) é 2θ = 2
√
m/M

• +0,4 pontos por notar que precisamos de uma rotação de π/2 graus para inverter o momento de M

• +0,1 pontos pela expressão correta de N

• Note que tem multiplos outros metodos de obter esse resultado, incluindo tomar um limite cont́ınuo
das colisões por exemplo. Qualquer metodo que obtenha N corretamente também ganha pontos
integrais.

Parte B: Caso ultra-relativ́ıstico

No regime ultra-relativ́ıstico, as part́ıculas se movem com momentos muito maiores que seus respectivos momen-
tos de repouso, isto é, p ≫ m · c. Nessa situação, a energia total de cada part́ıcula é dominada pela contribuição
cinética, com o espaço de fases assumindo uma geometria caracteŕıstica desse limite extremo.

Na parte B, considere o limite onde o momento inicial p0 da massa M satisfaz:

p0 ≫ M · c, p0 ≫ m · c, p0 ≫ M2

m
· c, M ≫ m (9)

B1. Esboçe o espaço de fase (p,q) do sistema nesse limite ultra-relativ́ıstico.
Qual é o formato da figura encontrada?

1,5pt

B2. Neste limite, quantas colisões entre M,m são necessárias até M mudar de direção? 1,5pt

Gabarito:

B1)

No limit ultra-relativ́ıstico, a equação de conservação de energia se torna:

E ≈ p0c ≈ |p|c+ |q|c (10)
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Que define efetivamente um losango no espaço p,q.

Marking Scheme:

• +1,0 pontos por notar que no limite ultra-relativ́ıstico temos E = (|p|+ |q|)c.

• +0,4 pontos pelo esboço do losango

• +0,1 pontos por indicar que os limites do gráfico são (±p0, 0) e (0,±p0)

B2)

Como o espaço de fases começa em (p0, 0), por conserva¸ão de momento graficamente, a evolução é tem que
ser da seguinte forma:

No grafico acima note M = 100,m = 1, v0 = 0.99999c.

Logo temos aproximadamente apenas 2 colisões nesse limite. A primeira retira a maioria do momento de
M , e a segunda inverte o movimento.
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Alternativamente, analiticamente, temos as seguintes equações:

Etot =
√
p20 +M2 +m = E0 +m =

√
p2 +M2 +

√
q2 +m2 (11)

e
p0 = p+ q ⇒ q = p0 − p (12)

Incluindo isso na primeira equação temos que (usando c = 1 por simplicidade)

E0 +m =
√
p2 +M2 +

√
(p0 − q)2 +m2 ⇒ (E0 +m−

√
p2 +M2)2 = (p0 − p)2 +m2 (13)

(E0 +m)2 − 2(E0 +m)
√
p2 +M2 + p2 +M2 = p20 − 2p0p+ p2 +m2 (14)

(E0 +m)2 − 2(E0 +m)
√
p2 +M2 +M2 = p20 − 2p0p+m2 (15)

2(E0 +m)
√
p2 +M2 = (E0 +m)2 +M2 − p20 + 2p0p−m2 = E2

0 + 2E0m+M2 − p20 + 2p0p (16)

(E0 +m)
√
p2 +M2 = E0m+M2 + p0p (17)

Usando a definição de E0. Assim:

√
p2 +M2 =

E0m+M2 + p0p

E0 +m
(18)

(p2 +M2)(E0 +m)2 = (E0m+M2 + p0p)
2 (19)

p2E2
0 + 2p2E0m+ p2m2 +M2E2

0 + 2M2E0m+M2m2 = E2
0m

2 + 2E0mM
2 (20)

+2E0mp0p+M4 + 2M2p0p+ p20p
2

Que usando novamente a definição de E0 simplifica em:

(p− p0)

(
p(M2 +m2 + 2E0m)− p0(M

2 −m2)

)
= 0 (21)

E assim, p = p0 (o estado inicial), ou:

p = p0
M2 −m2

M2 +m2 + 2E0m
= p0

M2 −m2

M2 +m2 + 2m
√
p20 +M2

(22)

Finalmente, usando que p0 ≫M e tambem que p0 ≫
√
Mm,M ≫ m, temos que:

p = p0
M2

2p0m
=
M2

2m
≪ p0, q = p0 −

M2

2m
≈ p0 (23)

Logo, a maioria do momento é transferido para m. Assim, depois da proxima colisão M ira se inverter.

Marking Scheme:

18
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• +1,0 pontos por notar que graficamente ou analiticamente que apos a primeira colisão a maioria do
momento de M é perdida nesse limite

• +0,5 pontos por argumentar que apos a segunda colisão M muda de direção

• Note que tem multiplos metodos de resolver este problema. Qualquer argumento que no limite
ultrarelativ́ıstico temos um número constante de colisões ganha pontos integrais.

Parte C: Limite semi-relativ́ıstico

A suposição que m ≪ M abre as portas para um terceiro caso muito curioso, onde uma das part́ıculas (a
massona) é clássica, enquanto a outra (a massinha) é ultra-relativistica. Nesta parte C, estudaremos este limite
semi-relativ́ıstico, onde o momento inicial p0 da massa M satisfaz:

M · c2 ≫ p20
2M

≫ m · c2 (24)

O que faz esse limite tão curioso, é que o sistema passa por três estágios diferentes, onde

1. primeiramente, m começa em repouso, e inicialmente se comporta classicamente, porque q ≪ m · c.

2. Eventualmente, após várias colisões, q ∼ m · c, e ela começa a se comportar de modo relativ́ıstico.

3. Finalmente, q ≫ m · c, e a massinha vira ultra-relativ́ıstica.

Hoje, desprezaremos os primeiros dois estágios, e estudaremos apenas o terceiro para estimar o número de
colisões até M mudar de direção.

C1. Usando a equação de conservação de energia neste limite semi-relativistico, já no
terceiro estágio (onde q ≫ m · c), mostre que o momento q da massinha satisfaz:

q ≈ m · c + f(M, p, p0, c) (25)

e encontre a função f(M, p, p0, c).

1,0pt

C2. No contexto da fig. 6, obtenha uma expressão aproximada para ∆p = p′ − p. Nova-
mente, considere o limite semi-relativ́ıstico.
Dê sua resposta em função apenas de q.

Dica: Pode ser útil a seguinte aproximação para |nx| ≪ 1:

(1 + x)n ≈ 1 + nx (26)

2,0pt

O caso semi-relativ́ıstico é bem mais complexo que os anteriores, logo consideramos um metódo diferente para
contar as colisões. Considere um limite cont́ınuo das colisões, onde o momento p(n) da massa M após a n-ésima
colisão (aproximadamente) satisfaz a seguinte equação diferencial:

d

dn
p(n) ≈ ∆p(n) (calculado no item acima) (27)

Por simplicidade, assuma que seu resultado na parte C.1 é válida sempre na região de momento da massa M p
de p0 até 0. Dado isso, usando a sua resposta dos dois itens acima, resolva:
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C3. Estime o número de colisões N até M mudar de direção, neste limite semi-
relativ́ıstico, usando apenas a dinâmica do terceiro estágio.
Dê sua resposta em função de M,m, c e p0.

Dica: Utilize a seguinte integral∫ a

0

dx

b2 − x2
=

1

2b
ln

(
b+ a

b− a

)
, onde b > a > 0. (28)

1,0pt

Gabarito:

C1)

No regime com q ≫ m · c, temos por conservação de energia:

mc2 +Mc2 +
p20
2M

≈ q · c+ m2c3

2q
+Mc2 +

p20
2M

(29)

Desprezando o ultimo termo de m2c3

2q , temos:

q ≈ mc+
1

2Mc
(p20 − p2) (30)

Logo, f(M,p0, p, c) =
1

2Mc (p
2
0 − p2).

Marking Scheme:

• +0,5 pontos por aplicar conservação de energia e obter uma equação para obter q

• +0,5 pontos por desprezar fatores quadraticos em m, e obter f(M,p0, p, c) corretamente

C2)

Tendo m como ultra-relativ́ıstico, temos as equações (usando c = 1 por simplicidade):

p2

2M
+ q =

p′2

2M
+ q′ (31)

p− q = p′ + q′ ⇒ q′ = p− q − p′ (32)

Assim:

p2

2M
+ q =

p′2

2M
+ p− q − p′ (33)

p′2

2M
− p′ + (p− 2q − p2

2M
) = 0 ⇒ p′2 − 2Mp′ + (2Mp− 4Mq − p2) = 0 (34)

p′ =
1

2

(
2M ±

√
4M2 − 4(2Mp− 4Mq − p2)

)
=M ±

√
M2 − 2Mp+ p2 + 4Mq (35)

p′ =M ±
√
(M − p)2 + 4Mq

Apenas a raiz negativa diminui o momento de M , logo p′ =M −
√
(M − p)2 +Mq.
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Agora, como p≪M , q ≪M , temos que:

p′ =M −
√

(M − p)2 +Mq ≈M − (M − p)

(
1 +

2Mq

(M − p)2

)
(36)

Onde usamos a aproximação para (1 + x)n na ultima etapa acima. Assim, ∆p = p′ − p é

∆p = p′ − p =M − p− (M − p)

(
1 +

2Mq

(M − p)2

)
= − 2Mq

M − p
≈ −2q (37)

Alternativamente, outro modo de solução consideravelmente mais simples, é notar que no limite M ≫ m,
a massona M efetivamente age como um espelho, e a massa m efetivamente reflete em torno de M . Dessa
forma, pode se afirmar que a variação de momento da massa m é 2q, e assim da massa M é também −2q.

Marking Scheme:

• +0,5 pontos por conservação de energia no limite m ultrarelativ́ıstico

• +0,5 pontos por obter uma equação quadratica correta para p′

• +0,5 pontos por escolher a solução correta para p′ da quadratica

• +0,5 pontos pela expressão correta para ∆p.

• Note: como tem varios metodos de resolver este problema, qualquer metodo que argumenta correta-
mente que ∆p = −2q ganha pontos integrais.

C3)

Dada a equação diferencial:

dp

dn
= −2(m+

1

2M
(p20 − p2)) = − 1

M

(
2mM + p20 − p2

)
= (38)

E assim, temos que o número de colisões para o momento p ir de p0 ate 0 é dado por:

N =M

∫ p0

0

dp

2mM + p20 − p2
(39)

Que é a integral dada caso percebemos:

b =
√
p20 + 2mM = p0

√
1 +

2mM

p20
≈ p0 +

mM

p0
, e a = p0 (40)

Note que mM/p0 ≪ 1, ja que p20 ≫ mM , assim:

N =
M

2b
ln
b+ a

b− a
≈ M

2p0
ln

2p0
mM/p0

=
M

2p0
ln

2p20
mM

(41)

Assim, ignorando fatores additivos e multiplicativos de segunda ordem/proporcionalidade, obtemos:

N ∼ M

p0
ln

p20
mM

(42)

Notavelmente, esse resultado agora depende do momento de uma forma bem interessante!

Marking Scheme:
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• Dado que esse item pede estimativas para N , seja bem liberal na correção e na precisão em fatores
de M,m e p0.

• +0,4 pontos pela integral de N em função de uma integral combinando os ultimos dois resultados da
parte C.

• +0,6 pontos pela expressão final de N a par de constantes multiplicativas/aditivas

Para os interessados, empiracamente o resultado acima é razoavelmente preciso. Abaixo esta um grafico
para p0 = 20000,m = 0.03 e variando M entre 106 e 4 · 106 (em unidades normalizadas com c = 1), com
eixo x sendo M e y sendo o número de colisões.

O erro relativo é ≤ 7.5%, então a expansão e metodo em geral é razoavelmente decente.
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Q5 - Part́ıcula confinada em um poço com barreiras finas (10 pontos)
Considere uma part́ıcula quântica de massa m, em uma região unidimensional. A part́ıcula está inicialmente
confinada na região central −a

2 < x < a
2 , que chamaremos de “poço”. Nas bordas do poço existem duas

barreiras de potencial idênticas, cada uma de espessura ε ≪ a e altura V0, centradas nas posições x = −a
2 e

x = +a
2 . Fora dessas duas barreiras, o potencial é praticamente nulo e a part́ıcula, se escapar, pode se mover

livremente. Um diagrama simplificado do potencial efetivo é mostrado abaixo.

V (x) ≈


0, −a

2 < x < a
2 (interior do poço)

V0, regiões finas de largura ε em x = ±a
2

0, fora das barreiras

Assuma que sabemos que existe inicialmente uma part́ıcula dentro do poço.

A. Usando o prinćıpio da incerteza de Heisenberg, estime a altura mı́nima da barreira
de potencial V0 necessária para confinar a part́ıcula dentro da região −a

2 < x < a
2 .

Discuta como essa estimativa depende dos parâmetros a, m e ℏ.

4,0pt

Gabarito:

A

A ideia f́ısica é a seguinte: se a part́ıcula está localizada dentro do poço, com extensão t́ıpica de ordem a,
então sua incerteza de posição ∆x é da ordem de

∆x ∼ a.

Pelo prinćıpio da incerteza de Heisenberg,

∆x∆p ≳
ℏ
2

=⇒ ∆p ∼ ℏ
2a
.

Isso sugere que a part́ıcula, por estar espacialmente confinada, terá tipicamente um momento da ordem de
∆p, e portanto uma energia cinética t́ıpica da ordem de

Ecin ∼ (∆p)2

2m
=

1

2m

(
ℏ
2a

)2

=
ℏ2

8ma2
.

Para que a part́ıcula permaneça confinada, é necessário que essa energia t́ıpica seja menor do que a altura
da barreira V0. Caso contrário, a barreira não seria capaz de ”segurar”a part́ıcula: o estado quântico teria
energia grande o suficiente para que a part́ıcula escapasse sem precisar tunelar.

Portanto, exigimos

V0 ≳ Ecin ∼ ℏ2

8ma2
.

Uma estimativa mı́nima razoável para a altura da barreira é então

V
(mı́n)
0 ∼ ℏ2

8ma2
.

Critério de correção (4,0 pt).

• 2,0 pt: uso expĺıcito de Heisenberg ∆x∆p ∼ ℏ/2 para obter ∆p ∼ ℏ/(2a).
• 1,0 pt: estimativa da energia cinética t́ıpica ℏ2/(8ma2).
• 1,0 pt: argumento de que V0 deve ser maior que essa energia para garantir confinamento.
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Assuma agora que a energia média da part́ıcula é E, com E ≪ V0, tal que a probabilidade T seja pequena.
A part́ıcula está inicialmente confinada no poço, mas, por efeito de tunelamento quântico, existe uma pequena
probabilidade da part́ıcula atravessar uma das barreiras finas e escapar para fora. Admita que, ao incidir uma
única vez sobre uma parede, essa pequena probabilidade pode ser aproximada por

T ∼ exp
[
−α
√
V0ε
]
,

em que α é uma constante f́ısica de dimensões adequadas.

B. Utilize argumentos f́ısicos para estimar como α deve depender das constantes do
problema.

2,0pt

Gabarito:

(B)

Queremos estimar como deve ser a constante α na expressão

T ∼ exp
[
−α
√
V0 ε

]
,

onde T é a probabilidade de transmissão através de uma única barreira de potencial de altura V0 e espessura
ε, assumindo E ≪ V0.

A exigência f́ısica é que o expoente seja adimensional.

Logo, o produto α
√
V0 ε deve ser adimensional.

Vamos analisar cada pedaço:

• ε tem dimensão de comprimento [L].
• V0 é energia, então

√
V0 tem dimensão

√
[E].

• Precisamos então que α
√
V0 ε não tenha dimensão alguma.

Sabemos que, em Mecânica Quântica, a constante de Planck reduzida ℏ relaciona momento e comprimento
via p ∼ ℏ/L, e que a combinação

√
2mV0 tem dimensão de momento. Mais precisamente,√

2mV0 tem dimensão de quantidade de movimento (momento).

Observe que √
2mV0
ℏ

tem dimensão de inverso de comprimento [L]−1, pois ℏ tem dimensão de momento × comprimento.

Assim, √
2mV0
ℏ

ε

é adimensional.

Portanto, para que o fator no expoente tenha dimensão correta, α
√
V0 deve ser equivalente (a menos de

fator numérico) a
√
mV0/ℏ. Em outras palavras, a constante α deve ter a forma

α ∼
√
m

ℏ
.

Critério de correção (2,0 pt).

• 1,0 pt: argumento dimensional mostrando que o expoente deve ser adimensional e levando à com-
binação

√
2mV0 ε/ℏ.

• 1,0 pt: conclusão de que α ∼
√
m/ℏ, ou forma equivalente que exponha as dependências em m e ℏ.
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Eventuais fatores numéricos no parâmetro α podem ser desconsiderados para os objetivos de estimativa dessa
questão. A part́ıcula se move aproximadamente livre dentro do poço, batendo sucessivamente contra as barreiras
e tentando escapar a cada colisão com probabilidade T muito pequena em cada colisão.

C. Estime o tempo de meia-vida de confinamento da part́ıcula dentro do poço, isto é, o
tempo necessário para que a probabilidade de ainda encontrá-la no interior do poço
caia para metade do valor inicial. Sua resposta deve ser dada em termos de a, ε, m,
ℏ, E e V0.

4,0pt

Gabarito:

(C)

A part́ıcula oscila para a esquerda e para a direita dentro do poço quase como uma part́ıcula livre. Cada
vez que ela chega perto de uma barreira, há uma chance pequena de tunelar e escapar.

i) Estimar a velocidade t́ıpica dentro do poço.

Se a energia média é E (puramente cinética, já que dentro do poço o potencial é aproximadamente zero),
então

E ∼ p2

2m
=⇒ p ∼

√
2mE.

Logo, a velocidade t́ıpica é

v ∼ p

m
=

√
2E

m
.

ii) Estimar a frequência de colisões com uma barreira.

A part́ıcula percorre uma distância da ordem de a para ir de uma barreira até a outra. Assim, o tempo
t́ıpico entre colisões com a mesma barreira é da ordem de

τviagem ∼ a

v
=

a√
2E/m

= a

√
m

2E
.

Portanto, a taxa com que a part́ıcula ”bate”em uma dada barreira é da ordem de

fcol ∼
1

τviagem
=

1

a

√
2E

m
.

Como existem duas barreiras (em x = −a/2 e x = +a/2), a taxa total de tentativas de fuga é aproximada-
mente o dobro:

ftent ∼
2

a

√
2E

m
.

iii) Estimar a probabilidade de transmissão por tunelamento em uma barreira.

Para uma barreira de altura V0 e largura ε, com E ≪ V0, a probabilidade de tunelamento (transmissão) é
exponencialmente suprimida. Uma estimativa padrão, sem resolver a equação de Schrödinger em detalhe,
é escrever a atenuação como

T ∼ exp[−2κε] , com κ ∼
√

2m(V0 − E)

ℏ
≈

√
2mV0
ℏ

(E ≪ V0).

Ou seja,

T ∼ exp

[
− 2ε

√
2mV0
ℏ

]
.

Isso significa: a cada colisão com a barreira, a probabilidade de escapar é aproximadamente T .
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iv) Estimar a taxa de escape.

A taxa de escape Γ (probabilidade por unidade de tempo de escapar) é, aproximadamente,

Γ ∼ ftent × T ∼

(
2

a

√
2E

m

)
exp

[
− 2ε

√
2mV0
ℏ

]
.

v) Relacionar a taxa de escape ao tempo de meia-vida.

Se a probabilidade P (t) de a part́ıcula ainda estar no poço decai aproximadamente de forma exponencial,

P (t) ∼ e−Γt,

então o tempo de meia-vida τ1/2 é definido por P (τ1/2) = 1/2, isto é,

1

2
= e−Γτ1/2 =⇒ τ1/2 =

ln 2

Γ
.

Substituindo Γ:

τ1/2 ∼ ln 2(
2

a

√
2E

m

)
exp

[
− 2ε

√
2mV0
ℏ

] =
ln 2

2
a

√
m

2E
exp

[
2ε

√
2mV0
ℏ

]
.

Portanto, uma estimativa para o tempo de meia-vida de confinamento é

τ1/2 ∼ ln 2

2
a

√
m

2E
exp

[
2ε

√
2mV0
ℏ

]
.

Critério de correção (4,0 pt).

• 1,0 pt: estimar velocidade t́ıpica v ∼
√
2E/m e taxa de colisão ∼ v/a.

• 1,0 pt: estimar a frequência de choques.
• 1,0 pt: combinar a taxa de choques com a probabilidade individual de tunelamento para obter Γ.
• 1,0 pt: combinar os resultados para obter Γ e τ1/2 = (ln 2)/Γ.

Observação: Podem haver outros caminhos ligeiramente diferentes de estimativa posśıveis. De maneira
geral, diferenças de fatores numéricos podem ser toleradas desde que argumentos equivalentes à solução
oficial sejam apresentados.
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