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Q1 - Péndulo de barras compensadas (10 pontos)

Considere um péndulo fisico composto por trés barras delgadas e homogéneas, conectadas por duas pequenas
plataformas rigidas de espessura desprezivel, conforme o esquema conceitual abaixo.
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Figura 1: Diagrama esquematico do péndulo de barras compensadas.

As duas barras principais tém massa M; = M e comprimento L; = L, sendo ligadas paralelamente pelas
plataformas em suas extremidades. O sistema pode oscilar em torno de um pivo situado no centro da plataforma
superior, de modo que o conjunto se comporte como um corpo rigido oscilando em torno de um eixo horizontal
e perpendicular ao plano das barras.

Na extremidade inferior, presa a plataforma oposta, encontra-se uma barra auxiliar de massa My = M/2 e
comprimento Ly = L/2; orientada em direcdo ao pivd, isto é, apontando para cima. Todas as barras sdo
delgadas e homogéneas. As plataformas, assim como conexdes entre barras, tém massa desprezivel. O objetivo
do arranjo é reduzir a variagao do periodo de oscilagdo com respeito & variagdo da temperatura 6.

Considere que o movimento do sistema possa ser tratado como pequenas oscilagdes no plano vertical. A distancia
entre as duas barras principais é muito pequena quando comparada aos comprimentos L e L/2. A aceleragao
da gravidade é g, tomada constante.

A. Determine a distancia h do centro de massa com respeito ao pivo da oscilagao. 1,0pt

Gabarito:

A.

As duas barras principais (cada uma com massa M e comprimento L) estdo presas pela plataforma superior
no pivo e se estendem para baixo. Cada barra homogénea tem seu centro de massa a uma distancia L/2
abaixo do pivd. Como ha duas barras idénticas, a contribuicdo total de massa dessas barras é 2M, e seu
centro de massa efetivo estd a L/2 do pivo.

A barra auxiliar tem massa M/2 e comprimento L/2, e estd presa pela plataforma inferior voltada para
cima, em direcao ao pivo. Logo, seu extremo mais alto estd na plataforma inferior, cuja posicao esta a uma
distancia L abaixo do pivo (pois coincide com as extremidades inferiores das barras principais). Assim,
medindo a partir do pivé para baixo como sentido positivo, a barra auxiliar ocupa a faixa de posigoes entre
y=L— % = % ey = L. O centro de massa dessa barra esta, portanto, a uma distancia média entre essas
extremidades, isto é,

yauX:T— 1
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Logo:
M  5M
massa total M, = 2M + 5 =3

Escolhendo o pivo como origem vertical y = 0, com y > 0 apontando para baixo, temos:

L M 3L L 3L

2M - [ = — | — Z 4 M 2
<2>+2 <4>2M'2+2 4
Moy B 5M '

2

ycm:h:

Portanto, a distancia entre o pivd e o centro de massa total é

11
h=—L.
20
Critério de corregao (4,0 pt).
e 0,5 pt: Expressao correta de h.
e 0,5 pt: Resultado final correto.
B. Determine o periodo T de pequenas oscilagdes do péndulo descrito, em funcao de  3,0pt
M, Leg.
Gabarito:

B.
i) Determinar o momento de inércia total I em torno do pivo.

Para cada barra principal (massa M, comprimento L, pivé em uma das extremidades), o momento de

inércia em torno do pivo é
1
2
Ibarra princ — gML .

Como existem duas barras idénticas:

1 2 2 2
I(duas princ) — 2- gML = gML .

Agora a barra auxiliar. Ela é uma barra homogénea de massa M /2 e comprimento L/2 cujo eixo estd
deslocado. Para uma barra uniforme, podemos usar o teorema dos eixos paralelos: o momento de inércia
em torno do centro de massa da barra é

;oL L (ML 1 M L ML
emaws = oM =0\ ) \2) T2 4 T o6

A distancia entre o pivd e o centro de massa da barra auxiliar é y,.x = 3L/4. Assim, pelo teorema dos
eixos paralelos:

Lux = Lom,aux x = 96 16 24
au cm,au +myaux 96 2 4 96 + 2 16 24

_ M (M) (3L>2  ML* M 9L  TML?

Portanto, o momento de inércia total é

2 7 2 7 16 7 23 23
I=1 - Lx==-ML*>+ —MI>?=ML*(Z+— )| =ML’ =4+ — | =ML%> = ==MIL2
(duas prine) - faux = 3 T (3 * 24) 21t 24~ 24
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ii) Calcular o periodo do péndulo.

A expressao geral para um péndulo fisico é

[T
T=2m)| ——.
Mtotgh

Substituindo os valores encontrados anteriormente na férmula:

Critério de correcao (4,0 pt).

e 1.5 pt: determinacao correta de 1.
e 1,5 pt: substituicao dos resultados anteriores em T = 2mw+/I/(Miorgh) e expressao final correta.

Admita agora que as barras principais e a barra auxiliar sofrem dilatacdo térmica linear, com coeficientes de
dilatacao linear respectivamente dados por a; e as.

C. Determine o valor numérico da razao a1 /as que garanta que o periodo de oscilagago T 6,0pt
permaneca aproximadamente invariante frente a pequenas variagoes de temperatura.
Considere apenas termos de primeira ordem em A#.

Gabarito:

(©)

Agora considere a dilatacao térmica. Para pequenas variagoes de temperatura AT

L
Li=L — L :L(1+OZ1AT), Ly = 5

L
Isso altera:
e 0 momento de inércia total I;
e a distancia h entre o pivo e o centro de massa total.

Portanto, o periodo do péndulo pode ser, no caso geral, modificado por variacoes de temperatura. Para
9y b ?
que o periodo seja termicamente estavel a primeira ordem, exigimos que 7T’ nao varie linearmente com 6.

Ou seja,
dr

5=

[ 1
T=2m4y| ——,
Mioigh

com M, constante (as massas ndo mudam com a temperatura), basta impor que a fracdo I/h nao varie
linearmente com AT. Em outras palavras, exigimos

d (1
d9<h>_0

0.

Como
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Essa condigao é satisfeita se tivermos, em primeira ordem, umas mesma variagao percentual das quantidades
I e h. Isto é:

Al Ah
I.AG  h.AG (1)

Sem perda de generalidade, podemos assumir valores unitarios de L e M para simplificar as expressoes a
seguir. E necessario agora, a partir das expressoes de I e h em termos de L e Lo, descobrir como essas
quantidades variam com variagoes de temperatura em termos de a; e as. Veja:

e Cilculo de Ah:

O centro de massa estd em .
3Ly — 5L

5
Com Ly =1+ a;Af e Ly = (1 + aaA), obtemos, a primeira ordem,

h

Ah71204170£2
hAG 11

e Cdélculo de AI:

O momento de inércia total é L

6
Substituindo os comprimentos dilatados e expandindo a primeira ordem,

I=2(7L7 —3L1Ly + L3) .

AT - 2(25@1 — 20[2)
IAG 23

Substituindo ambos os resultados na condigao , segue

2(25041 — 2042) - 120&1 — Qg

23 11 ’

e assim obtemos a razao desejada
(5] 21

a2_2774'

Critério de corregao (6,0 pt).

e 1.0 pt: identificagao correta das grandezas afetadas pela dilatacao térmica e escrita das dilatagoes
lineares L1 — Ll(l + Oéle) e LQ — Lg(l -+ OZQAQ).

1,0 pt: Reconhecimento da dependéncia térmica de I e h.

1,0 pt: expansao correta de I e h até primeira ordem em A#.

2,0 pt: obtencédo da relacao AI/I = Ah/h a partir da invariancia do perfodo.

1,0 pt: valor correto da razao aj/as.
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Q2 - Capacitor “defeituoso” (10 pontos)

De uma placa de um capacitor plano, descarregado, que se conecta, em paralelo, a uma bobina ideal de in-
duténcia L, se desprende uma lamina fina, de carga ¢ de dimensoes iguais as placas do capacitor. A lamina se
move com velocidade constante V' < ¢, na diregdo paralela as placas, ver figura abaixo.

d
>
ﬂ 7
d g i
-
: —>i

Figura 2: Diagrama esquematico do capacitor “defeituoso”.

A distancia entre as placas é d e a 4rea de cada uma delas, S. Considere v/S > d. A permissividade elétrica do
meio pelo qual se move a lamina é £9. Assuma que a carga ¢ da ldmina permanece distribuida uniformemente
na sua area ao longo de todo o processo.

A. Encontre uma expressao para a diferenca de potencial entre as placas do capacitor  4,5pt
em fungao do tempo.

Gabarito:

A. A placa, inicialmente estd descarregada. Da figura 77, temos que

Er=F— Ey
B0 Q) +4¢
= = T2
260 2508
02 q
Ey=—= .
2 250 2€0S
Entao, para a regiao I,
Q) —gq g -Qt) —2q, _ Q(t) +2¢
Er(t)| =|Ey — Es| = - = — )
| I( )l | ! 2‘ | 2505 2805' | 2505 ‘ 2605

Para a regiao I1,
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Eip =E3— By
B = % _ QW)
260 2€0S

Dali,

_ QM) g Q)—gqg
EII(t) n 2605 B 2605 - 2605

A diferenca de potencial entre as placas, por sua vez, é dada por
U(t) = E[(t)d[ + E[[(t)d[[

Q) +24 . Q) -q

U(t) = Vi d—Vt
( ) 2505 + 2505 ( )
vy~ Q04 3Vt ad Q) —qld+ 3qVt
QSOS 2 EOS 2505 QSOS '
d
<>
a, 12 3
L +Q(t) '
aw-qf |
v =
s i
LE ) o
Critério de correcgao (4,5 pt).
e 2.0 pt: determinacao correta de Ej.
e 1.5 pt: determinagao correta de Eyj.
e 1,0 pt: pela expressdo correta de U ().
B. Determine a dependéncia da corrente na bobina com o tempo durante o movimento  4,5pt
da lamina entre as placas do capacitor.
Gabarito:
B. Da lei das malhas...
dI AT [Q(t) — ¢ld + 3¢Vt
—L—-U(t)=—-L— — =0
dt ( ) At |: 2805
Dai...
dl [Q(t) — qld+ 3¢Vt 0

E 2€OSL
Derivando no tempo...
PI) | D G+ 3qV 0o | PI0) d Jp 3
dt> 2608 dt> 2e9SL 2c0SL
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Solucao: fazendo a seguinte troca de varidveis

3V d%(t) d

] = I ) =
i(t) (t) + = e 2€0SLz(t) 0
Portanto... —
I(t) = Acoswt + Bsinwt — qT
onde

o [ d
~V 2e0SL
Em t =0, I(0) = 0, entdo... A= 32" entdo
3qV d . d
I(t) = t+B t
(0) = =g oo\ 5o szt T B 5051

Em ¢ = 0 nao ha voltagem na bobina, entao

Assim. ..

Critério de correcao (4,5 pt).

e 25 pt: pela equacao diferencial para a corrente.
e 2.0 pt: pela expressao final, incluindo a expressao de w.

C. Faga um grafico qualitativo da corrente em fungao do tempo para o sistema em  1,0pt

questao.

Gabarito:

Gréficode I(t) vs t

-3

Corrente /(t)

-4

=5

-6 — 1t =2 (cos(wt) - 1)

y y T T T T T T
0.0 25 5.0 7.5 10.0 125 15.0 17.5
Tempo t

Critério de correcao (1,0 pt).

e 1.0 pt: desenho qualitativo correto do gréfico.
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Q3 - Analogia eletro-magneto-gravitacional (10 pontos)

Parte A. Casca esférica carregada girando (3,0 pontos)

Considere uma casca esférica, de raio R, com densidade superficial de carga elétrica uniforme e igual a o, girando

wR
com uma velocidade angular w. Sabe-se que — < 1.
c

Al. Encontre uma expressao para o vetor indugao magnética B no centro da casca  3,0pt
esférica. Expresse sua resposta em funcao de o, R, w e pyg.

Figura 3: Casca carregada girando.

Gabarito:

A1. Uma casca esférica uniformemente carregada girando cria correntes na superficie. Dividindo a esfera
em anéis de raio a = Rsin@ (ver figura [3):

dg = o(2ma)RdO = 2roaRd
B @ B @ _ 2moaRdfw

01 T = 27Tw o = caRwdl
= @I(fl X R
B = 4T RS

dl = (Rsin8)doo = dlg
A corrente 47 é a corrente correspondente a apenas um anel. As componentes radiais do campo se cancelam
e as verticais se somam.

Assim 1di 1di 1di
5 Mo . _ Mo a . Holata
dB = sh3 = 2=
e Y T R R R -
Integrando para esse anel, em dl:
- u0127ra2 R uola2 .
0B, = =
inRd © T 2R C

Aqui chamamos d B, ao campo do anel, que é um diferencial do campo da casca inteira. Entao, substituindo
a = Rsin# e usando a corrente di, para a casca temos, integrando em 6, de 0 — 7:

po oR?wsin HdOR?sin? 0 2
2 R? = gl

B. =
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Critério de correcao (3,0 pt).

e 2.0 pt: expressao correta de 5§2.
e 1,0 pt: expressao final de B,.

Parte B. Corpo carregado deformavel no centro de uma casca esférica
carregada, girando (7,0 pontos)
Suponha que no centro da esfera tenha um pequeno corpo deformével de dimensées § < R, com densidades

volumétricas homogéneas de massa, p, e de carga elétrica, A\. Este objeto também gira, em torno do mesmo
eixo z, mas com velocidade angular 2. O sistema é ilustrado na figura [4]

Figura 4: Casca carregada girando com corpo deformével na origem.

Sabe-se que existe uma velocidade angular 2 # 0 do corpo deformdavel no interior da esfera que rota, para a
qual o dito corpo mantém a forma que tem em auséncia de interagoes que possam deforma-lo.

B1. Calcule a velocidade angular Q em termos de grandezas fornecidas. Assuma que  2,5pt
os campos elétrico e magnético sao homogéneos em todo o volume do corpo de-
forméavel.

Gabarito:

B1. A forga de Lorentz, sobre um elemento de carga dq, do corpo no centro da casca é
71 = 0q[E(F) + ¥ x B(7)] = MV[E(7) + ¢ x B(7)]
O campo elétrico no centro da casca é nulo, entao
fr =XV [ x B(#]
Do item anterior, sabemos que B nao depende de 7, assim
fL = ASV[7 x B]
Da segunda lei de Newton

d(QxF):ém(Qxdr> — 5m (% ) = —6m (7 x Q)

5 —
L dt

f= m% = A6V (¥ x B)
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onde 7 é o vetor de posi¢ao do elemento de massa (carga) do corpo.

—

AV (T x B) = —pdV(Tx Q) =A@ x B)+p(0x Q) =0

Dai . B B =
X (AB+p)) =0= AB = —p{)
Finalmente
= A= A2u0R
O=_258~— _ A 2Ho T 2
p p 3
Critério de corregao (2,0 pt).
e 1,5 pt: expressao correta de fz = —dm(v QQ)
e 1.0 pt: expressao final para ().
B2. Encontre a carga liquida superficial que iguala ambas as velocidades angulares, 1,5pt
W e Q.
Gabarito:
B2. Usando o resultado do item anterior
A2upR 3
p 3 2mpo| AR
Dai
6mpR
Q = 4nR%|o| = e
oA
Critério de correcao (1,5 pt).
e 1.0 pt: expressao correta de o.
e 0,5 pt: expressao final para Q.
B3. Que sinais devem ter as cargas, superficial e do corpo deformavel, para que este  0,5pt

dltimo gire no mesmo sentido que a casca?

Gabarito:

B3. A partir da expressao de (), vemos que, se o e A tem sinais opostos, 2 é positiva, ou seja, terd o mesmo
sentido que . Isto é compativel com o fato da forga de interagao entre a casca e o corpo ser atrativa, dessa
forma, a casca “arrasta’o corpo a rotacao.

Critério de correcao (0,5 pt).

e 0,5 pt: pela explicagdo acima ou outra semelhante, aceitavel.

A analogia entre a lei de Coulomb e a lei de gravitacao universal, no limite de campos fracos e pequenas
velocidades, permite descrever os efeitos gravitacionais através de analogias eletromagnéticas. De acordo com
isto, o sistema anterior é andlogo a uma esfera coberta com uma densidade superficial de massa, o4, que gira, e
um corpo deformével no interior, andlogo ao anterior, particularmente, na sua densidade de massa, p, ajustando
corretamente os pardmetros. Considere que este ajuste se obtém substituindo as densidades de carga superficial
da esfera e volumétrica do corpo deformével segundo as regras: ¢ — /4megGog e A — /4megGp.

10
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B4. Utilize o resultado do item B2. e as regras de substituicao dadas para determinar a  2,5pt

razao entre a massa liquida superficial que igualaria as duas velocidades angulares
2

no caso gravitacional, e a massa de um buraco negro Mgy = ETek com raio R igual

ao da casca.

Gabarito:

B4. Usando as substituicoes propostas
A = AregGp

o — VaregGoy

6mpR 6mpR 9 9
Q o) Nz TR0 TR*\/4mwenGoy

Dai

67 R 3Rc?

9 podmeoG 2G BN

Critério de correcao (2,5 pt).

e 1,5 pt: pelas expressao correta de @) que leva a igualdade relacionando p e oy.
e 1,0 pt: pela expressao final para M,.

11
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Q4 - Contando colisoes relativisticas (10 pontos)

Considere duas particulas pontuais de massas (de repouso) M e m, se movendo ao longo do eixo z (fig. ).
Inicialmente, a massa M se encontra com momento pg, andando em dire¢cdo a massa m (em repouso). Apds
a primeira colisao, a massa m é lancada em direcao a parede, onde ela ira colidir e refletir, até colidir com M
novamente. Esse processo se repete, até a massa M eventualmente mudar de diregao.

: \

Figura 5: O estado inicial, antes da primeira colisao entre as massas M,m.

Este cenario é um problema famoso na mecanica cléssica. Discutiremos a seguir a sua versao relativistica. O
objetivo sera estimar o nimero N de colisoes entre as massas até a direcao de movimento de M se inverter.

Parte A: Caso classico

Digamos que, em determinado instante, M encontra com momento p no eixo x, e estd prestes a colidir com a
outra massa m se movendo com momento —q. Depois da colisao, ambas M e m se movem na mesma dire¢ao
com momentos p’ e q’ respectivamente (fig. @

16 \TEé

Figura 6: O instante da colisao. Momentos (p, — q) (antes) se transformam em (p’,q’) (depois).

Assuma que todas as colisdes, entre as massas e com a parede, sdo perfeitamente eldsticas, e que as massas
deslizam sobre a superficie sem atrito.

Al. Escreva a equagao de conservacao de energia (relativistica) durante a colisdao da  0,5pt
fig. [6] relacionando p,q,p’,q’, M, m, e a velocidade da luz c.

No resto da parte A, estudaremos o limite classico, onde p,q < M -¢,m - c.

A2. Neste limite classico, esboge o espaco de fase do sistema. Isto é, desenhe um grafico  0,5pt
2D, com eixos (p,q), representando os valores de momento admissiveis dado apenas
a equagao de conservagao de energia. Indique pontos notaveis no seu esbogo, em
fungao de M, m, pg.
Dica: O formato da curva é uma conica.

12
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A3. Escreva a equacgao de conservagao de momento durante a colisao da fig. [6] relacio-  0,5pt
nando p,q, p’,q’. Faria alguma diferenca se as particulas fossem relativisticas?

No grafico do espago de fase do item b, o sistema inicialmente se encontra na coordenada (pg,0). Agora,
estudaremos como o sistema evolui apos as colisoes, neste grafico.

A4. No contexto da fig. @] (e novamente, no caso cldssico), digamos que o sistema se  0,5pt
encontre na coordenada (p, — q), onde p,q > 0. Faca outro esbogo do espago de
fase, e represente os pontos (p, — q) (antes da colisdo) e (p’,q’) (depois) no seu
esboco. Represente também a configuracao do sistema ap6s m refletir na parede.

AS5. Mostre que, no limite onde pg < m-c¢ < M- ¢, o nimero de colisoes até M mudar 1,0pt
de direcao é
T M
Ncléssico ~ Z E (2)

Dica: Normalize os eixos do espago de fase, para o diagrama virar um circulo:
(p,q) = (p/vM, q/+/m). Neste circulo, qual o dngulo entre (p,q) e (p’,q’)?

Gabarito:

A1) Por conservagao de energia, temos:

E = \/p202 + M2t + \/q2 +m2ct = \/p’%z + M2t + \/(1’202 + m2ct (3)

Marking Scheme:
e 10,5 pontos por escrever a expressao correta de F

A2) Classicamente, temos M -¢>> p e m-c>> ¢, e a equagao de conservagao de energia nesse limite implica:

E=2 L (4)

2
Dado que energia é conservada e originalmente temos F = 2‘%:

(B) - () + ()

Que implica uma elipse para p,q, como esbocado abaixo:

q

(-p,, 0)

(0’ -qmm)
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Note que ¢nq: acima, é dado por:
P54
oM g;‘;z = Gmaz = PovVm/M. (6)

Marking Scheme:

2 2
- - o q
e +0,2 pontos por reconhecer que no limite cldssico temos E = o3 + 5

e +0,1 pontos pelo esboco da elipse

e +0,1 pontos por indicar os pontos (£po,0) e (0, ¢maz)

e 10,1 pontos pela expressao correta de ¢,q; N0 esbogo
A3)

Por conservagao de momento:

p—q=p+4q (7)
Essa equgao é valida sempre.
Marking Scheme:
e +0,4 pontos pela equacao de conservacao de momento
e 10,1 pontos por indicar que é valida sempre
e Nao penalize caso o aluno escreva p + g = p’ + ¢’ desde que reconhega que g é negativo
A4)

No espaco de fases, podemos obter o estado do sistema depois da colisdo (p’,q") obtendo a intersecgao da
elipse de p,q com a equacao de conservagdo de momento, p’ + ¢’ = Constante, como na figura abaixo entre

os pontos (p, —q) e (p',¢")

(P, a)

(p,-q)

Y

_ﬂ’,/////ﬁmw

Depois da colisao com a parede, temos que o momento da massa m se inverte, que corresponde a uma
reflexdo no plano z, como a seta entre os pontos (p’,¢') e (p”,¢"") acima.

Marking Scheme:

e +0,3 pontos por notar graficamente que apos a colisao pode se obter (p’,q') pela intersecao entre a
elipse do espaco de fases e conservagao de momento.

e 10,2 pontos por notar que graficamente a colisao com a parede representa uma reflexao pelo eixo
horizontal
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A5)

Dada a dica, vamos escalar a equagdo da elipse p,q por 1/v/M,1/\/m respectivamente, da forma =z =
p/VM,y = q//m para que a equacgao da elipse se torne 2 + 3> = Constante. Dessa forma, o espaco de
fases para z,y define um circulo.

Alem disso, note que por conservacao de momento, apos cada colisdo temos p + g = Constante —
vV M +1y+/m = Constante. Ou seja, conservagao de momento implica uma reta no plano x,y com inclinagao

—v/M/m.

Alem disso, perceba que apos cada colisdo o momento da massa m se inverte, logo temos a seguinte trajetoria
no espaco de fases (e também no sistema de coordenadas x,y):

00100

0.0075
0.0050
0.0025
0.0000
-0.0025
-0.0050
V.
-0.0075
y —
y
\d

-0.0100

qmomento

00100
00075

~0.100 -0.075 ~0.050 -0.025 0000 0025 0050 0075 0100
00050
00025

p momento
n(mun /

-0.0025
-0.0050

Y
-0.0075

y
¥ [/‘

-0.0100

-0.0100 ~0.0075 -0.0050 -0.0025 0.0000 00025 00050 00075 00100
P/ sartiM)

a/sart(m)

Os graficos acima sdo com M = 100, m = 1,v9 = ¢/1000. Note que apos cada colisdo entre as massas, e
depois com a parede, temos que um ponto (z,y) é rotacionado por um angulo § = 2,/m/M ao longo do
circulo, e apos N colisdes tal que N§ = 7/2 a diregdo de m se inverte. Assim, obtemos que com N:

T | M
N~ —/—
Vo (8)

colisoes M muda de direcao.
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Marking Scheme:
e 10,4 pontos por notar que no sistema x = p/\/M, y = q/+/m o espago de fases é um circulo
e +0,1 pontos por notar que o angulo entre (p,q) e (p',q") é 20 = QW
e +0,4 pontos por notar que precisamos de uma rotagdo de 7/2 graus para inverter o momento de M
e +0,1 pontos pela expressao correta de N

e Note que tem multiplos outros metodos de obter esse resultado, incluindo tomar um limite continuo
das colisces por exemplo. Qualquer metodo que obtenha N corretamente também ganha pontos
integrais.

Parte B: Caso ultra-relativistico

No regime ultra-relativistico, as particulas se movem com momentos muito maiores que seus respectivos momen-
tos de repouso, isto é, p > m-c. Nessa situacao, a energia total de cada particula é dominada pela contribuicao
cinética, com o espago de fases assumindo uma geometria caracteristica desse limite extremo.

Na parte B, considere o limite onde o momento inicial py da massa M satisfaz:

M2
Po>M-c, pp>m-c, po>-—-c M>m (9)

B1. Esboge o espaco de fase (p,q) do sistema nesse limite ultra-relativistico. 1,5pt
Qual é o formato da figura encontrada?

B2. Neste limite, quantas colisdes entre M, m sdo necessarias até M mudar de direcao? 1,5pt

Gabarito:

B1)

No limit ultra-relativistico, a equagao de conservacao de energia se torna:

E = poc = |plc+ |q|c (10)
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Que define efetivamente um losango no espago p,q.

Marking Scheme:
e +1,0 pontos por notar que no limite ultra-relativistico temos E = (|p| + |¢])c.
e +0,4 pontos pelo esboco do losango
e +0,1 pontos por indicar que os limites do grafico sdo (£py,0) e (0, £po)

B2)

Como o espago de fases comega em (pg,0), por conserva do de momento graficamente, a evolugao é tem que
ser da seguinte forma:

20000

10000

q momento

-10000

-20000

~20000 -10000 0 10000 20000
p momento

No grafico acima note M = 100, m = 1,vy = 0.99999¢.

Logo temos aproximadamente apenas 2 colisdes nesse limite. A primeira retira a maioria do momento de
M, e a segunda inverte o movimento.
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Alternativamente, analiticamente, temos as seguintes equagoes:

E“’t:\/Im+m:E0+m=\/p2+M2+\/q2+m2 (11)

Po=pP+q=q=po—Dp (12)

Incluindo isso na primeira equagéo temos que (usando ¢ = 1 por simplicidade)

Eo+m=+p2+ M2+ \/(po—q)2 +m2= (Eo+m — /p? + M2)? = (py — p)® +m? (13)

(Eo —|—m)2 —2(Ey + m)+/p? + M? +p? + M? :p% — 2pop + p? + m? (14)
(Eo +m)* = 2(Eo +m)\/p? + M? + M? = pg — 2pop + m” (15)

2(E() + m)va + M2 = (E(] + m)2 + M2 —p% + 2p0p — m2 = E(2) + 2E0m + M2 — p(z) + 2pop (16)

(Eo +m)\/p? + M? = Eym + M? + pop (17)

Usando a definicao de Ey. Assim:

_ Eom + M? + pop

2+ M2 18
Pt EO +m ( )
(p* + M?)(Eo +m)® = (Egm + M? + pop)® (19)
p>E3 + 2p*Egm + p*m? + M?E3 + 2M?*Eqm + M?*m? = Eim?* + 2EymM? (20)
+2Egmpop + M* + 2M?pop + pop”
Que usando novamente a definigao de Ey simplifica em:
(p—po)(p(M2+m2 +2Eym) — po(M? —m2)) =0 (21)
E assim, p = py (0 estado inicial), ou:
M2 _ m2 M2 _ m2
P =Po73 5 =Po (22)
M? +m? 4+ 2Eym M2+ m2+2m /p3+M2
Finalmente, usando que pg > M e tambem que pg > v Mm, M > m, temos que:
M? M? M?
PPy = o P = P05 0 (23)

Logo, a maioria do momento é transferido para m. Assim, depois da proxima colisdo M ira se inverter.

Marking Scheme:
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e +1,0 pontos por notar que graficamente ou analiticamente que apos a primeira colisao a maioria do
momento de M é perdida nesse limite

e 10,5 pontos por argumentar que apos a segunda colisao M muda de direcao

e Note que tem multiplos metodos de resolver este problema. Qualquer argumento que no limite
ultrarelativistico temos um nimero constante de colisoes ganha pontos integrais.

Parte C: Limite semi-relativistico

A suposicdo que m < M abre as portas para um terceiro caso muito curioso, onde uma das particulas (a
massona) é cldssica, enquanto a outra (a massinha) é ultra-relativistica. Nesta parte C, estudaremos este limite
semi-relativistico, onde o momento inicial py da massa M satisfaz:

p
M-¢2 > -2 > m-c (24)
O que faz esse limite tao curioso, é que o sistema passa por trés estagios diferentes, onde
1. primeiramente, m comecga em repouso, e inicialmente se comporta classicamente, porque q < m - c.
2. Eventualmente, apds varias colisoes, g ~ m - ¢, e ela comega a se comportar de modo relativistico.
3. Finalmente, g > m - ¢, e a massinha vira ultra-relativistica.

Hoje, desprezaremos os primeiros dois estagios, e estudaremos apenas o terceiro para estimar o nimero de
colisoes até M mudar de direcao.

C1. Usando a equagao de conservagao de energia neste limite semi-relativistico, ja no  1,0pt
terceiro estdgio (onde g > m - ¢), mostre que o momento q da massinha satisfaz:

gem-c + f(M,p,po,c) (25)

e encontre a fungao f(M, p, pg, ¢).

C2. No contexto da fig. [6] obtenha uma expressio aproximada para Ap = p’ —p. Nova-  2,0pt
mente, considere o limite semi-relativistico.
Dé sua resposta em fungao apenas de q.

Dica: Pode ser 1itil a seguinte aproximagao para |nz| < 1:

(1+2)"~1+nz (26)

O caso semi-relativistico é bem mais complexo que os anteriores, logo consideramos um metodo diferente para
contar as colisoes. Considere um limite continuo das colisdes, onde o momento p(n) da massa M apés a n-ésima
colisdo (aproximadamente) satisfaz a seguinte equagao diferencial:

d
d—p(n) ~ Ap(n) (calculado no item acima) (27)
n

Por simplicidade, assuma que seu resultado na parte C.1 é valida sempre na regiao de momento da massa M p
de pg até 0. Dado isso, usando a sua resposta dos dois itens acima, resolva:
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C3. Estime o ntimero de coliscbes N até M mudar de direcao, neste limite semi- 1,0pt
relativistico, usando apenas a dinamica do terceiro estéagio.
Dé sua resposta em funcao de M, m, c e pg.

Dica: Utilize a seguinte integral

/szlln(bJra), onde b>a>0. (28)
0

b2 —22 2 b—a

Gabarito:

C1)

No regime com g > m - ¢, temos por conservacao de energia:

2 >, Do m?c? >, Do
M —= ~q- M - 29
me” + c+2M q-c+ 2q+ c+2M (29)
Desprezando o ultimo termo de m;f, temos:
~ 22
q~mc+ (p5 —p°) (30)

2Mc

Logo, f(M,po,p,c) = 535 (5 — P*).
Marking Scheme:

e +0,5 pontos por aplicar conservacao de energia e obter uma equagao para obter g

e +0,5 pontos por desprezar fatores quadraticos em m, e obter f(M,pg,p,c) corretamente
C2)

Tendo m como ultra-relativistico, temos as equagoes (usando ¢ = 1 por simplicidade):

p p /
b 31
2M+q 2M+q ( )
p—q=p+d=d¢d=p—q-7 (32)
Assim:
2 12
r 4 o
oaf TU= g TP A (33)
p/2 p2
onf Pt 20— 530) =0=p% —2Mp + (2Mp — AMq - p*) =0 (34)
1
o = 2(2Mj: VAM? 4(2Mp4qu2)> =M + /M2 - 2Mp + p? + 4Mq (35)

p =M=+ \/(M—p)+4Mq

Apenas a raiz negativa diminui o momento de M, logo p' = M — /(M — p)? + Mgq.
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Agora, como p < M, ¢ < M, temos que:

p'—M\/sz(Mp)(1+(A§A_4;2> (36)

Onde usamos a aproximagao para (1 + )™ na ultima etapa acima. Assim, Ap=p' —p é

~ —2q (37)

2M 2M
Ap:p’—pzM—p—(M—p)<1+ 1 >=— :

(M —p)? M —p

Alternativamente, outro modo de solucao consideravelmente mais simples, é notar que no limite M > m,
a massona M efetivamente age como um espelho, e a massa m efetivamente reflete em torno de M. Dessa
forma, pode se afirmar que a variacao de momento da massa m é 2q, e assim da massa M é também —2gq.

Marking Scheme:
e +0,5 pontos por conservagao de energia no limite m ultrarelativistico
e +0,5 pontos por obter uma equagao quadratica correta para p’
e 10,5 pontos por escolher a solugao correta para p’ da quadratica
e +0,5 pontos pela expressdo correta para Ap.

e Note: como tem varios metodos de resolver este problema, qualquer metodo que argumenta correta-
mente que Ap = —2¢q ganha pontos integrais.

C3)

Dada a equagao diferencial:

dp _

= =2m+ g0~ 1) =~ (2mM 4= ) = (39)

2M M

E assim, temos que o niimero de colisoes para o momento p ir de py ate 0 é dado por:

N:M/pOL (39)
o 2mM + p3 — p?

Que € a integral dada caso percebemos:

2mM mM
b=\/p§+2mM =po,[1+ P Rﬁpo—i—p—,ea:po (40)
0 0

Note que mM /py < 1, ja que p3 > mM, assim:

M1 b+aNM1 2po 7M12p(2)

N=— ~N——In—2 = 41
2b nb—a 2po an/pO 2po an (41)
Assim, ignorando fatores additivos e multiplicativos de segunda ordem/proporcionalidade, obtemos:
M 2
N~ —In-20 (42)

po  mM

Notavelmente, esse resultado agora depende do momento de uma forma bem interessante!

Marking Scheme:
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e Dado que esse item pede estimativas para N, seja bem liberal na corregao e na precisao em fatores
de M,m e pg.

e +0,4 pontos pela integral de N em func¢ao de uma integral combinando os ultimos dois resultados da
parte C.

e +0,6 pontos pela expressao final de N a par de constantes multiplicativas/aditivas

Para os interessados, empiracamente o resultado acima é razoavelmente preciso. Abaixo esta um grafico
para py = 20000, m = 0.03 e variando M entre 10° e 4 - 10° (em unidades normalizadas com ¢ = 1), com
eixo x sendo M e y sendo o nimero de colisoes.

—— Exato (por simulacao)
q Ultrarelativistico

900

800

700

600

500

400

300

10 15 20 25 30 35 40
1e6

O erro relativo é < 7.5%, entao a expansao e metodo em geral é razoavelmente decente.
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Q5 - Particula confinada em um pogo com barreiras finas (10 pontos)

Considere uma particula quantica de massa m, em uma regiao unidimensional. A particula estd inicialmente
confinada na regiao central —5 < x < g, que chamaremos de “pogo”. Nas bordas do pogo existem duas
barreiras de potencial idénticas, cada uma de espessura ¢ < a e altura Vp, centradas nas posicoes z = —5 e
x = +3. Fora dessas duas barreiras, o potencial é praticamente nulo e a particula, se escapar, pode se mover

livremente. Um diagrama simplificado do potencial efetivo é mostrado abaixo.

0, —§<z<g (interior do poco)
V(z)~ Vo, regioes finas de largura ¢ em x = +%

0, fora das barreiras

Assuma que sabemos que existe inicialmente uma particula dentro do pogo.

A. Usando o principio da incerteza de Heisenberg, estime a altura minima da barreira  4,0pt
de potencial Vp necessdria para confinar a particula dentro da regiao —5 <z < 3.
Discuta como essa estimativa depende dos parametros a, m e h.

Gabarito:

A

A ideia fisica é a seguinte: se a particula estd localizada dentro do pogo, com extensdo tipica de ordem a,
entao sua incerteza de posicdo Az é da ordem de

Az ~ a.

Pelo principio da incerteza de Heisenberg,

h

Az Ap 2 .
2a

[l

Isso sugere que a particula, por estar espacialmente confinada, terd tipicamente um momento da ordem de
Ap, e portanto uma energia cinética tipica da ordem de

B B2 L (1Y

om  2m \2a) ~ 8ma?’

Para que a particula permaneca confinada, é necessdrio que essa energia tipica seja menor do que a altura
da barreira V4. Caso contrario, a barreira nao seria capaz de "segurar”a particula: o estado quantico teria
energia grande o suficiente para que a particula escapasse sem precisar tunelar.

Portanto, exigimos
h2

PR

\%
0 8ma

2 Ecin ~

~

Uma estimativa minima razodvel para a altura da barreira é entao

. h2
V(mln) ~ -
0 8ma?

Critério de correcao (4,0 pt).

e 2.0 pt: uso explicito de Heisenberg Ax Ap ~ hi/2 para obter Ap ~ h/(2a).
e 1,0 pt: estimativa da energia cinética tipica h?/(8ma?).
e 1,0 pt: argumento de que Vj deve ser maior que essa energia para garantir confinamento.
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Assuma agora que a energia média da particula é E, com E < Vj, tal que a probabilidade T' seja pequena.
A particula estd inicialmente confinada no poco, mas, por efeito de tunelamento quantico, existe uma pequena
probabilidade da particula atravessar uma das barreiras finas e escapar para fora. Admita que, ao incidir uma
lunica vez sobre uma parede, essa pequena probabilidade pode ser aproximada por

T ~ exp {704 VQE} ,

em que « é uma constante fisica de dimensées adequadas.

B. Utilize argumentos fisicos para estimar como « deve depender das constantes do  2,0pt
problema.

Gabarito:

(B)
Queremos estimar como deve ser a constante a na expressao
T~ exp[foz VOE} ,
onde T é a probabilidade de transmissao através de uma unica barreira de potencial de altura Vj e espessura
e, assumindo F < V.
A exigéncia fisica é que o expoente seja adimensional.
Logo, o produto ay/Vj ¢ deve ser adimensional.
Vamos analisar cada pedaco:

e ¢ tem dimensdo de comprimento [L].
o Vj é energia, entao 1/Vp tem dimensdo /[E].
e Precisamos entao que a+/Vj € nao tenha dimensao alguma.

Sabemos que, em Mecanica Quéntica, a constante de Planck reduzida & relaciona momento e comprimento
via p ~ h/L, e que a combinagao v/2mV; tem dimensdo de momento. Mais precisamente,

v2mVy tem dimensao de quantidade de movimento (momento).

Observe que

V2mVy

h
tem dimenséao de inverso de comprimento [L]~!, pois / tem dimensao de momento x comprimento.
Assim,

2mV0

7 3

é adimensional.

Portanto, para que o fator no expoente tenha dimensao correta, a/Vy deve ser equivalente (a menos de
fator numérico) a vmVp/h. Em outras palavras, a constante « deve ter a forma

vm
=

o~

Critério de correcao (2,0 pt).

e 1.0 pt: argumento dimensional mostrando que o expoente deve ser adimensional e levando & com-

binagdo v2mV;e/h.

e 1,0 pt: conclusao de que « ~ /m/h, ou forma equivalente que exponha as dependéncias em m e h.
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Eventuais fatores numéricos no parametro oo podem ser desconsiderados para os objetivos de estimativa dessa
questao. A particula se move aproximadamente livre dentro do pogo, batendo sucessivamente contra as barreiras
e tentando escapar a cada colisao com probabilidade 7" muito pequena em cada colisao.

C. Estime o tempo de meia-vida de confinamento da particula dentro do pogo, isto é, 0 4,0pt
tempo necesséario para que a probabilidade de ainda encontra-la no interior do pogo
cala para metade do valor inicial. Sua resposta deve ser dada em termos de a, €, m,
h, Ee V.

Gabarito:

(©)

A particula oscila para a esquerda e para a direita dentro do poco quase como uma particula livre. Cada
vez que ela chega perto de uma barreira, ha uma chance pequena de tunelar e escapar.

i) Estimar a velocidade tipica dentro do pocgo.

Se a energia média é E (puramente cinética, ji4 que dentro do pogo o potencial é aproximadamente zero),

entao )
p

E~— — p~+V2mE.
2m
Logo, a velocidade tipica é
p 2F
v~y — = —_—
m m

ii) Estimar a frequéncia de colisbes com uma barreira.

A particula percorre uma distancia da ordem de a para ir de uma barreira até a outra. Assim, o tempo
tipico entre colisoes com a mesma barreira é da ordem de

a a m

Tviagem ™~ — A\ —=.
& v /2E/m 2F

Portanto, a taxa com que a particula ”bate”em uma dada barreira é da ordem de

1 1 /2F
fcol ~ = —\ —-
Tviagem a m

Como existem duas barreiras (em z = —a/2 e © = +a/2), a taxa total de tentativas de fuga é aproximada-

mente o dobro:
2 |2F
frent ~ =4/ —.
aV m

iii) Estimar a probabilidade de transmissido por tunelamento em uma barreira.

Para uma barreira de altura Vj e largura €, com E < Vj, a probabilidade de tunelamento (transmissao) é
exponencialmente suprimida. Uma estimativa padrao, sem resolver a equagao de Schrodinger em detalhe,
é escrever a atenuacdo como

2m(Vo — E) _ /2mVy

T ~ exp|—2ke], com K~ > N (E < V).
Ou seja,
=
T ~exp|—2¢ |

Isso significa: a cada colisdo com a barreira, a probabilidade de escapar é aproximadamente 7.
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iv) Estimar a taxa de escape.

A taxa de escape I' (probabilidade por unidade de tempo de escapar) é, aproximadamente,

'~ fient x T ~ (2\/2E> eXp{—% QmV()} )
aV m h

v) Relacionar a taxa de escape ao tempo de meia-vida.

Se a probabilidade P(t) de a particula ainda estar no pogo decai aproximadamente de forma exponencial,
P(t) ~e 1,
entao o tempo de meia-vida 75 é definido por P(7y /) = 1/2, isto é,

1 e Tre In2
- = Ty = —.
2 127

Substituindo I':

In2 In2 m {2 Qm‘/o}
Ty g ~ = —a — €X 13

/ (2 /2E> [ \/2m%} 2 2E h
—4/— | exp|—2¢
aVl m h

Portanto, uma estimativa para o tempo de meia-vida de confinamento é

2 M | 2e Y2V
T1/2 9 a o exXp | 4& 7 .

Critério de correcao (4,0 pt).

e 1,0 pt: estimar velocidade tipica v ~ \/2E/m e taxa de colisdo ~ v/a.

e 1,0 pt: estimar a frequéncia de choques.

e 1,0 pt: combinar a taxa de choques com a probabilidade individual de tunelamento para obter IT'.
e 1,0 pt: combinar os resultados para obter I' e 7y /5 = (In2)/T".

Observagao: Podem haver outros caminhos ligeiramente diferentes de estimativa possiveis. De maneira
geral, diferencas de fatores numéricos podem ser toleradas desde que argumentos equivalentes & solugao
oficial sejam apresentados.
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